1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slava [35]
3 years ago
15

How many factors are in how many factors of 50 are there ​

Mathematics
1 answer:
barxatty [35]3 years ago
6 0

Answer:

6 factors

Step-by-step explanation:

Count them; 1, 2, 5, 10, 25, 50

You might be interested in
Q+r+s, for q=46, s =54
steposvetlana [31]
Q + r + s.....q = 46, s = 54
46 + r + 54
100 + r <==
4 0
4 years ago
At a certain time of day, a tree that is x meters tall casts a shadow that is x−46x−46 meters long. if the distance from the top
Alexus [3.1K]
By the Pythagorean theorem,
.. x^2 +(x -46)^2 = (x +4)^2
.. 2x^2 -92x +2116 = x^2 +8x +16
.. x^2 -100x +2100 = 0
.. (x -50)^2 -400 = 0
.. x = 50 ±20 . . . . . only x=70 makes any sense in the problem

The height, x, of the tree is 70 meters.
5 0
3 years ago
Please help me I have been stuck on this question for ages
Finger [1]

Answer:28 green and 35 red

Step-by-step explanation:

Given

If there are r red counter and g green counter then

Probability of drawing a green counter is P(g)=\frac{4}{9}

and P(g)=\frac{\text{No of g counter}}{\text{Total no of counter}}

Thus \frac{\text{No of g counter}}{\text{Total no of counter}}=\frac{4}{9}

\frac{g}{g+r}=\frac{4}{9}

\Rightarrow 9g=4g+4r

\Rightarrow 5g=4r\quad \ldots(i)

Also if 4 red and 2 green counter is added the probability of drawing a green counter is

P(g)=\frac{10}{23}=\frac{\text{No of g counter}}{\text{Total no of counter}}

\Rightarrow \frac{10}{23}=\frac{g+2}{g+2+r+4}

\Rightarrow \frac{10}{23}=\frac{g+2}{g+r+6}

\Rightarrow 10g+10r+60=23g+46

\Rightarrow 10r+14=13g\ quad \ldots(ii)

Substitute the value of g in equation (ii)[/tex]

\Rightarrow 10\times \frac{5}{4}g+14=13g

\Rightarrow \frac{25}{2}g+14=13g

\Rightarrow g=28

Therefore r=35

Thus there 28 green counter and 35 red counter

6 0
3 years ago
(x+2/x-7) - (x^2+4x+13/x^2-4x-21)
olya-2409 [2.1K]

Answer:

x = -2.98079 or x = -1.15272 or x = 0.892002 or x = 4.24151

Step-by-step explanation:

Solve for x:

-x^2 + x + 14 + 2/x - 13/x^2 = 0

Bring -x^2 + x + 14 + 2/x - 13/x^2 together using the common denominator x^2:

(-x^4 + x^3 + 14 x^2 + 2 x - 13)/x^2 = 0

Multiply both sides by x^2:

-x^4 + x^3 + 14 x^2 + 2 x - 13 = 0

Multiply both sides by -1:

x^4 - x^3 - 14 x^2 - 2 x + 13 = 0

Eliminate the cubic term by substituting y = x - 1/4:

13 - 2 (y + 1/4) - 14 (y + 1/4)^2 - (y + 1/4)^3 + (y + 1/4)^4 = 0

Expand out terms of the left hand side:

y^4 - (115 y^2)/8 - (73 y)/8 + 2973/256 = 0

Add (sqrt(2973) y^2)/8 + (115 y^2)/8 + (73 y)/8 to both sides:

y^4 + (sqrt(2973) y^2)/8 + 2973/256 = (sqrt(2973) y^2)/8 + (115 y^2)/8 + (73 y)/8

y^4 + (sqrt(2973) y^2)/8 + 2973/256 = (y^2 + sqrt(2973)/16)^2:

(y^2 + sqrt(2973)/16)^2 = (sqrt(2973) y^2)/8 + (115 y^2)/8 + (73 y)/8

Add 2 (y^2 + sqrt(2973)/16) λ + λ^2 to both sides:

(y^2 + sqrt(2973)/16)^2 + 2 λ (y^2 + sqrt(2973)/16) + λ^2 = (73 y)/8 + (sqrt(2973) y^2)/8 + (115 y^2)/8 + 2 λ (y^2 + sqrt(2973)/16) + λ^2

(y^2 + sqrt(2973)/16)^2 + 2 λ (y^2 + sqrt(2973)/16) + λ^2 = (y^2 + sqrt(2973)/16 + λ)^2:

(y^2 + sqrt(2973)/16 + λ)^2 = (73 y)/8 + (sqrt(2973) y^2)/8 + (115 y^2)/8 + 2 λ (y^2 + sqrt(2973)/16) + λ^2

(73 y)/8 + (sqrt(2973) y^2)/8 + (115 y^2)/8 + 2 λ (y^2 + sqrt(2973)/16) + λ^2 = (2 λ + 115/8 + sqrt(2973)/8) y^2 + (73 y)/8 + (sqrt(2973) λ)/8 + λ^2:

(y^2 + sqrt(2973)/16 + λ)^2 = y^2 (2 λ + 115/8 + sqrt(2973)/8) + (73 y)/8 + (sqrt(2973) λ)/8 + λ^2

Complete the square on the right hand side:

(y^2 + sqrt(2973)/16 + λ)^2 = (y sqrt(2 λ + 115/8 + sqrt(2973)/8) + 73/(16 sqrt(2 λ + 115/8 + sqrt(2973)/8)))^2 + (4 (2 λ + 115/8 + sqrt(2973)/8) (λ^2 + (sqrt(2973) λ)/8) - 5329/64)/(4 (2 λ + 115/8 + sqrt(2973)/8))

To express the right hand side as a square, find a value of λ such that the last term is 0.

This means 4 (2 λ + 115/8 + sqrt(2973)/8) (λ^2 + (sqrt(2973) λ)/8) - 5329/64 = 1/64 (512 λ^3 + 96 sqrt(2973) λ^2 + 3680 λ^2 + 460 sqrt(2973) λ + 11892 λ - 5329) = 0.

Thus the root λ = 1/48 (-3 sqrt(2973) - 115) + 1/12 (-i sqrt(3) + 1) ((3 i sqrt(10705335) - 8327)/2)^(1/3) + (173 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(10705335) - 8327)^(1/3)) allows the right hand side to be expressed as a square.

(This value will be substituted later):

(y^2 + sqrt(2973)/16 + λ)^2 = (y sqrt(2 λ + 115/8 + sqrt(2973)/8) + 73/(16 sqrt(2 λ + 115/8 + sqrt(2973)/8)))^2

Take the square root of both sides:

y^2 + sqrt(2973)/16 + λ = y sqrt(2 λ + 115/8 + sqrt(2973)/8) + 73/(16 sqrt(2 λ + 115/8 + sqrt(2973)/8)) or y^2 + sqrt(2973)/16 + λ = -y sqrt(2 λ + 115/8 + sqrt(2973)/8) - 73/(16 sqrt(2 λ + 115/8 + sqrt(2973)/8))

Solve using the quadratic formula:

y = 1/8 (sqrt(2) sqrt(16 λ + 115 + sqrt(2973)) + sqrt(2) sqrt((10252 - 32 sqrt(2973) λ - 256 λ^2 + 292 sqrt(2) sqrt(16 λ + 115 + sqrt(2973)))/(16 λ + 115 + sqrt(2973)))) or y = 1/8 (sqrt(2) sqrt(16 λ + 115 + sqrt(2973)) - sqrt(2) sqrt((10252 - 32 sqrt(2973) λ - 256 λ^2 + 292 sqrt(2) sqrt(16 λ + 115 + sqrt(2973)))/(16 λ + 115 + sqrt(2973)))) or y = 1/8 (sqrt(2) sqrt((10252 - 32 sqrt(2973) λ - 256 λ^2 - 292 sqrt(2) sqrt(16 λ + 115 + sqrt(2973)))/(16 λ + 115 + sqrt(2973))) - sqrt(2) sqrt(16 λ + 115 + sqrt(2973))) or y = 1/8 (-sqrt(2) sqrt(16 λ + 115 + sqrt(2973)) - sqrt(2) sqrt((10252 - 32 sqrt(2973) λ - 256 λ^2 - 292 sqrt(2) sqrt(16 λ + 115 + sqrt(2973)))/(16 λ + 115 + sqrt(2973)))) where λ = 1/48 (-3 sqrt(2973) - 115) + 1/12 (-i sqrt(3) + 1) ((3 i sqrt(10705335) - 8327)/2)^(1/3) + (173 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(10705335) - 8327)^(1/3))

Substitute λ = 1/48 (-3 sqrt(2973) - 115) + 1/12 (-i sqrt(3) + 1) ((3 i sqrt(10705335) - 8327)/2)^(1/3) + (173 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(10705335) - 8327)^(1/3)) and approximate:

y = -3.23079 or y = -1.40272 or y = 0.642002 or y = 3.99151

Substitute back for y = x - 1/4:

x - 1/4 = -3.23079 or y = -1.40272 or y = 0.642002 or y = 3.99151

Add 1/4 to both sides:

x = -2.98079 or y = -1.40272 or y = 0.642002 or y = 3.99151

Substitute back for y = x - 1/4:

x = -2.98079 or x - 1/4 = -1.40272 or y = 0.642002 or y = 3.99151

Add 1/4 to both sides:

x = -2.98079 or x = -1.15272 or y = 0.642002 or y = 3.99151

Substitute back for y = x - 1/4:

x = -2.98079 or x = -1.15272 or x - 1/4 = 0.642002 or y = 3.99151

Add 1/4 to both sides:

x = -2.98079 or x = -1.15272 or x = 0.892002 or y = 3.99151

Substitute back for y = x - 1/4:

x = -2.98079 or x = -1.15272 or x = 0.892002 or x - 1/4 = 3.99151

Add 1/4 to both sides:

Answer: x = -2.98079 or x = -1.15272 or x = 0.892002 or x = 4.24151

7 0
3 years ago
Read 2 more answers
Which of the following is a factor of 2x^4 22x^3 60x^2? 2x^3 x^4 x 4 x 5
zavuch27 [327]
The factor theorem says that for a function f(x), if f(a) = 0, then (x - a) is a factor of f(x).
For f(x) = 2x^4 + 22x^3 + 60x^2
f(-5) = 2(-5)^4 + 22(-5)^3 + 60(-5)^2 = 2(625) + 22(-125) + 60(25) = 1250 - 2750 + 1500 = 0
Therefore, x - (-5) = x + 5 is a factor of f(x).
8 0
4 years ago
Other questions:
  • What is the answer to this 1.84 × 25.1
    5·1 answer
  • Omar is on a diet to lose some weight. He is losing weight at a rate of 2 pounds per week. After 6 weeks, his weight is 204 poun
    12·1 answer
  • Joaquim earns a salary of $4,000 per month plus a 6% commision on all of his sales. He wants to earn more than 7,000 next month.
    8·1 answer
  • Try It!
    9·1 answer
  • Find the total surface area of the figure shown.<br> 20 cm<br> 16 cm<br> 10 cm<br> 12 cm
    6·1 answer
  • There are 12 students in the gym class. If 4 students can sit on I bench, how
    15·1 answer
  • 1 Fifty-five students, 4 teachers, and 3
    8·1 answer
  • What is the value of r?
    6·2 answers
  • What does y=mx+b equal
    7·1 answer
  • The SAT is the most widely used test in the undergraduaté admissions process, Scores on the math portion of the SAT are believed
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!