1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
posledela
3 years ago
7

Please can someone help me with INTERIM CHECKPOINT Math problems

Mathematics
1 answer:
gogolik [260]3 years ago
8 0
The answer will be -32
You might be interested in
Match each function with the corresponding function formula when h(x)=5-3x and g(x)=-3+5
Grace [21]

Answer:

k(x) = (3g + 5h)(x) ⇒ (1)

k(x) = (5h - 3g)(x) ⇒ (3)

k(x) = (h - g)(x) ⇒ (2)

k(x) = (g + h)(x) ⇒ (4)

k(x) = (5g + 3h)(x) ⇒ (5)

k(x) = (3h - 5g)(x) ⇒ (6)

Step-by-step explanation:

* To solve this problem we will substitute h(x) and g(x) in k(x) in the

  right column to find the corresponding function formula in the

  left column

∵ h(x) = 5 - 3x

∵ g(x) = -3^x + 5

- Lets start with the right column

# k(x) = (3g + 5h)(x)

∵ g(x) = -3^x + 5

∵ 3g(x) = 3[-3^x + 5] = [3 × -3^x + 3 × 5]

- Lets simplify 3 × -3^x

 take the negative out -(3 × 3^x), and use the rule a^n × a^m = a^(n+m)

∴ -3(3 × 3^x) = -(3^x+1)

∴ 3g(x) = -3^x+1 + 15

∵ h(x) = 5 - 3x

∵ 5h(x) = 5[5 - 3x] = [5 × 5 - 5 × 3x] = 25 - 15x

- Now substitute 3g(x) and 5h(x) in k(x)

∵ k(x) = (3g + 5h)(x)

∴ k(x) = -3^x+1 + 15 + 25 - 15x ⇒ simplify

∴ k(x) = 40 - 3^x+1 - 15x

∴ k(x) = 40 - 3^x+1 - 15x ⇒ k(x) = (3g + 5h)(x)

* k(x) = (3g + 5h)(x) ⇒ (1)

# k(x) = (5h - 3g)(x)

∵ 5h(x) = 25 - 15x

∵ 3g(x) = -3^x+1 + 15

∵ k(x) = (5h - 3g)(x)

∴ k(x) = 25 - 15x - (-3^x+1 + 15) = 25 -15x + 3^x+1 - 15 ⇒ simplify

∴ k(x) = 10 + 3^x+1 - 15x

∴ k(x) = 10 + 3^x+1 - 15x ⇒ k(x) = (5h - 3g)(x)

* k(x) = (5h - 3g)(x) ⇒ (3)

# k(x) = (h - g)(x)

∵ h(x) = 5 - 3x

∵ g(x) = -3^x + 5

∵ k(x) = (h - g)(x)

∴ k(x) = 5 - 3x - (-3^x + 5) = 5 - 3x + 3^x - 5 ⇒ simplify

∴ k(x) = 3^x - 3x

∴ k(x)= 3^x - 3x ⇒ k(x) = (h - g)(x)

* k(x) = (h - g)(x) ⇒ (2)

# k(x) = (g + h)(x)

∵ h(x) = 5 - 3x

∵ g(x) = -3^x + 5

∵ k(x) = (g + h)(x)

∴ k(x) = -3^x + 5 + 5 - 3x ⇒ simplify

∴ k(x) = 10 - 3^x - 3x

∴ k(x)= 10 - 3^x - 3x ⇒ k(x) = (g + h)(x)

* k(x) = (g + h)(x) ⇒ (4)

# k(x) = (5g + 3h)(x)

∵ g(x) = -3^x + 5

∵ 5g(x) = 5[-3^x + 5] = [5 × -3^x + 5 × 5] = 5(-3^x) + 25

∴ 5g(x) = -5(3^x) + 25

∵ h(x) = 5 - 3x

∵ 3h(x) = 3[5 - 3x] = [3 × 5 - 3 × 3x] = 15 - 9x

- Now substitute 5g(x) and 3h(x) in k(x)

∵ k(x) = (5g + 3h)(x)

∴ k(x) = -5(3^x) + 25 + 15 - 9x ⇒ simplify

∴ k(x) = 40 - 5(3^x) - 9x

∴ k(x) = 40 - 5(3^x) - 9x ⇒ k(x) = (5g + 3h)(x)

* k(x) = (5g + 3h)(x) ⇒ (5)

# k(x) = (3h - 5g)(x)

∵ 3h(x) = 15 - 9x

∵ 5g(x) = -5(3^x) + 25

∵ k(x) = (3h - 5g)(x)

∴ k(x) = 15 - 9x - [-5(3^x) + 25] = 15 - 9x + 5(3^x) - 25 ⇒ simplify

∴ k(x) = 5(3^x) - 9x - 10

∴ k(x) = 5(3^x) - 9x - 10 ⇒ k(x) = (3h - 5g)(x)

* k(x) = (3h - 5g)(x) ⇒ (6)

4 0
3 years ago
Find the volume of a cone with diamter 12 and height 8
NeX [460]

Answer:

Step-by-step explanation:

V = 1/3 * pi * r^2 * h

d = 12

r = d/2

r = 12/2

r = 6

V = 1/3 * 3.14 * 6^2 * 8

V = 301.44

3 0
3 years ago
Choose the congruence theorem that you would use to prove the triangles congruent.
Elena L [17]

<u><em>Answer:</em></u>

SAS

<u><em>Explanation:</em></u>

<u>Before solving the problem, let's define each of the given theorems:</u>

<u>1- SSS (side-side-side):</u> This theorem is valid when the three sides of the first triangle are congruent to the corresponding three sides in the second triangle

<u>2- SAS (side-angle-side):</u> This theorem is valid when two sides and the included angle between them in the first triangle are congruent to the corresponding two sides and the included angle between them in the second triangle

<u>3- ASA (angle-side-angle):</u> This theorem is valid when two angles and the included side between them in the first triangle are congruent to the corresponding two angles and the included side between them in the second triangle

<u>4- AAS (angle-angle-side):</u> This theorem is valid when two angles and a side that is not included between them in the first triangle are congruent to the corresponding two angles and a side that is not included between them in the second triangle

<u>Now, let's check the given triangles:</u>

We can note that the two sides and the included angle between them in the first triangle are congruent to the corresponding two sides and the included angle between them in the second triangle

This means that the two triangles are congruent by <u>SAS</u> theorem

Hope this helps :)

5 0
3 years ago
Read 2 more answers
How many mL of a 10% magnesium sulfate solution will contain 14 grams of magnesium sulfate?
lapo4ka [179]

Answer:

Upto 40 g or 160 mmols

Step-by-step explanation:

Can you plz mark me as brainliest?

6 0
3 years ago
Read 2 more answers
Connor drove 340 miles on 8 gallons of gas. How many miles did his car travel per gallon of gas?
MrMuchimi

Answer:

42.5

Step-by-step explanation:

calculatour

5 0
3 years ago
Other questions:
  • If v1 = (2,-5) and v2 = (4,-3), then the angle between the two vectors is _________. Round your answer to two decimal places.
    7·1 answer
  • Answer the following questions.
    14·2 answers
  • ¿Qué es 1/3 x5 / 6? ¿Qué es 2/5 x 3/7?​
    12·1 answer
  • Planet Fitness charges a one-time membership fee of $25 and then a monthly charge of $10. Retro Fitness charges a one-time membe
    10·1 answer
  • A weather reporter in your area said that the speed of sound in air today is about 1100 ft./s what is the speed in scientific no
    10·1 answer
  • I need help with this plsss
    5·1 answer
  • Identify the area of the trapezoid.
    10·2 answers
  • Please help u need help ASAP
    11·1 answer
  • Question 3
    11·1 answer
  • 54 divided by _____ = -27
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!