2 molecules of N2, because the hydrogen is the limiting reactant, leaving there to be more N (4 molecules) so those 4 molecules create 2 N2 molecules.
Boiling is the rapid vaporization of a liquid, which occurs when a liquid is heated to its boiling point, the temperature at which the vapour pressure of the liquid is equal to the pressure exerted on the liquid by the surrounding atmosphere. There are two main types of boiling; nucleate boiling where small bubbles of vapour form at discrete points, and critical heat flux boiling where the boiling surface is heated above a certain critical temperature and a film of vapor forms on the surface. Transition boiling is an intermediate, unstable form of boiling with elements of both types. The boiling point of water is 100 °C or 212 °F, but is lower with the decreased atmospheric pressure found at higher altitudes.
Boiling water is used as a method of making it potable by killing microbes that may be present. The sensitivity of different micro-organisms to heat varies, but if water is held at 70 °C (158 °F) for ten minutes, many organisms are killed, but some are more resistant to heat and require one minute at the boiling point of water. Clostridium spores can survive this treatment, but as the infection caused by this microbe is not water-borne, this is not a problem.
Boiling is also used in cooking. Foods suitable for boiling include vegetables, starchy foods such as rice, noodles and potatoes, eggs, meats, sauces, stocks and soups. As a cooking method it is simple and suitable for large scale cookery. Tough meats or poultry can be given a long, slow cooking and a nutritious stock is produced. Disadvantages include loss of water-soluble vitamins and minerals. Commercially prepared foodstuffs are sometimes packed in polythene sachets and sold as "boil-in-the-bag" products.
Answer: -
15.55 M
35.325 molal
Explanation: -
Let the volume of the solution be 1000 mL.
Density of nitric acid = 1.42 g/ mL
Total Mass of nitric acid Solution = Volume of nitric acid x Density of nitric acid
= 1000 mL x 1.42 g/ mL
= 1420 g.
Percentage of HNO₃ = 69%
Amount of HNO₃ = 
= 979.8 g
Molar mass of HNO₃ = 1 x 1 + 14 x 1 + 16 x 3 = 63 g /mol
Number of moles of HNO₃ = 
= 15.55 mol
Molarity is defined as number of moles per 1000 mL
We had taken 1000 mL as volume and found it to contain 15.55 moles.
Molarity of HNO₃ = 15.55 M
Mass of water = Total mass of nitric acid solution - mass of nitric acid
= 1420 - 979.8
= 440.2 g
So we see that 440.2 g of water contains 15.55 moles of HNO₃
Molality is defined as number of moles of HNO₃ present per 1000 g of water.
Molality of HNO₃ = 
= 35.325 molal