Answer:
(a) The proportion of dry air bypassing the unit is 14.3%.
(b) The mass of water removed is 1.2 kg per 100 kg of dry air.
Explanation:
We can express the proportion of air that goes trough the air conditioning unit as
and the proportion of air that is by-passed as
, being
.
The amount of water that goes into the drier inlet has to be 0.004 kg/kg, and can be expressed as:

Replacing the first equation in the second one we have

(b) Of every kg of dry air feed, 85.7% goes in to the air conditioning unit.
It takes (0.016-0.002)=0.014 kg water per kg dry air feeded.
The water removed of every 100 kg of dry air is

It can also be calculated as the difference in humiditiy between the inlet and the outlet: (0.016-0.004=0.012 kgW/kDA) and multypling by the total amount of feed (100 kgDA).
100 * 0.012 = 1.2 kgW
The correct answer for #8 is:
C. The original pattern of the light is distorted.
The law of conservation of mass or principle of mass conservation states that for any system closed to all transfers of matter and energy, the mass of the system must remain constant over time, as system's mass cannot change, so quantity cannot be added nor removed. Hence, the quantity of mass is conserved over time.
The law implies that mass can neither be created nor destroyed, although it may be rearranged in space, or the entities associated with it may be changed in form. For example, in chemical reactions, the mass of the chemical components before the reaction is equal to the mass of the components after the reaction. Thus, during any chemical reaction and low-energy thermodynamic processes in an isolated system, the total mass of the reactants, or starting materials, must be equal to the mass of the products.
The concept of mass conservation is widely used in many fields such as chemistry, mechanics, and fluid dynamics. Historically, mass conservation was demonstrated in chemical reactions independently by Mikhail Lomonosov and later rediscovered by Antoine Lavoisier in the late 18th century. The formulation of this law was of crucial importance in the progress from alchemyto the modern natural science of chemistry.
The conservation of mass only holds approximately and is considered part of a series of assumptions coming from classical mechanics. The law has to be modified to comply with the laws of quantum mechanics and special relativityunder the principle of mass-energy equivalence, which states that energy and mass form one conserved quantity. For very energetic systems the conservation of mass-only is shown not to hold, as is the case in nuclear reactions and particle-antiparticle annihilation in particle physics.
Mass is also not generally conserved in open systems. Such is the case when various forms of energy and matter are allowed into, or out of, the system. However, unless radioactivity or nuclear reactions are involved, the amount of energy escaping (or entering) such systems as heat, mechanical work, or electromagnetic radiation is usually too small to be measured as a decrease (or increase) in the mass of the system.
For systems where large gravitational fields are involved, general relativity has to be taken into account, where mass-energy conservation becomes a more complex concept, subject to different definitions, and neither mass nor energy is as strictly and simply conserved as is the case in special relativity.
Answer:
(2) Student A scored 15 points higher than student B
Explanation:
Because they said 15 points higher instead of their grades are better (The same thing 4 does.
Answer: D
Explanation:
Utilicé traductor de español para responder esta pregunta