Explanation:
For the equilibrium:
\rho_{wood}gh-\rho_{oil}g(h-x)-\rho_{water}gx=0ρ
wood
gh−ρ
oil
g(h−x)−ρ
water
gx=0
\rho_{wood}h-\rho_{oil}(h-x)-\rho_{water}x=0ρ
wood
h−ρ
oil
(h−x)−ρ
water
x=0
(974)(3.97)-928(3.97-x)-1000x=0(974)(3.97)−928(3.97−x)−1000x=0
x=2.54\ cmx=2.54 cm
Answer:
Tension= 21,900N
Components of Normal force
Fnx= 17900N
Fny= 22700N
FN= 28900N
Explanation:
Tension in the cable is calculated by:
Etorque= -FBcostheta(1/2L)+FT(3/4L)-FWcostheta(L)= I&=0 static equilibrium
FTorque(3/4L)= FBcostheta(1/2L)+ FWcostheta(L)
Ftorque=(Fcostheta(1/2L)+FWcosL)/(3/4L)
Ftorque= 2/3FBcostheta+ 4/3FWcostheta
Ftorque=2/3(1350)(9.81)cos55° + 2/3(2250)(9.81)cos 55°
Ftorque= 21900N
b) components of Normal force
Efx=FNx-FTcos(90-theta)=0 static equilibrium
Fnx=21900cos(90-55)=17900N
Fy=FNy+ FTsin(90-theta)-FB-FW=0
FNy= -FTsin(90-55)+FB+FW
FNy= -21900sin(35)+(1350+2250)×9.81=22700N
The Normal force
FN=sqrt(17900^2+22700^2)
FN= 28.900N
Actually, the speed of the earth is the same everywhere, taking the angular speed as the valid measure of the speed
Answer: 83.3 W
Explanation: I think, I’m not sure. If I’m wrong correct me ;)
Look at the title of the graph, in small print under it.
Each point is "compared to 1950-1980 baseline". So the set of data for those years is being compared to itself. No wonder it matches up pretty close !