Answer: 12.67 cm, 8 cm
Explanation:
Given
Normal distance of separation of eyes, d(n) = 6 cm
Distance of separation is your eyes, d(y) = 9.5 cm
Angle created during the jump, θ = 0.75°
To solve this, we use the formula,
θ = d/r, where
θ = angle created during the jump
d = separation between the eyes
r = distance from the object
θ = d/r
0.75 = 9.5 / r
r = 9.5 / 0.75
r = 12.67 cm
θ = d/r
0.75 = 6 / r
r = 6 / 0.75
r = 8 cm
Thus, the object is 12.67 cm far away in your own "unique" eyes, and just 8 cm further away to the normal person eye
Answer: An object undergoing uniform circular motion is moving
Explanation:
To solve this problem we will use the concepts related to power, defined as the amount of energy applied over a period of time.
The energy in this case is the accumulated in the form of potential energy, over a period of time. Thus we will have that the mathematical expression of the power can be expressed as

Here,
E = Energy
t = time
As the energy is equal to the potential Energy we have tat

The weight (mg) of the man is 700N, the height (h) is 8m and the time is 10s, then:


Therefore the correct answer is A.
Answer:
The film thickness is 4.32 * 10^-6 m
Explanation:
Here in this question, we are interested in calculating the thickness of the film.
Mathematically;
The number of fringes shifted when we insert a film of refractive index n and thickness L in the Michelson Interferometer is given as;
ΔN = (2L/λ) (n-1)
where λ is the wavelength of the light used
Let’s make L the subject of the formula
(λ * ΔN)/2(n-1) = L
From the question ΔN = 8 , λ = 540 nm, n = 1.5
Plugging these values, we have
L = ((540 * 10^-9 * 8)/2(1.5-1) = (4320 * 10^-9)/1 = 4.32 * 10^-6 m
To answer this item, we assume that the gas being referred to here is an ideal gas such that it follows the Gay-Lussac's law wherein,
P = kT
The equation shows the direct relationship between the pressure and the temperature. Thus, if heat is added which would consequently raise the substance's temperature, will also increase the pressure.