Explanation:
It is given that, the position of a particle as as function of time t is given by :

Let v is the velocity of the particle. Velocity of an object is given by :

![v=\dfrac{d[(8t+9)i+(2t^2-8)j+6tk]}{dt}](https://tex.z-dn.net/?f=v%3D%5Cdfrac%7Bd%5B%288t%2B9%29i%2B%282t%5E2-8%29j%2B6tk%5D%7D%7Bdt%7D)

So, the above equation is the velocity vector.
Let a is the acceleration of the particle. Acceleration of an object is given by :

![a=\dfrac{d[8i+4tj+6k]}{dt}](https://tex.z-dn.net/?f=a%3D%5Cdfrac%7Bd%5B8i%2B4tj%2B6k%5D%7D%7Bdt%7D)

At t = 0, 

Hence, this is the required solution.
The magnet (south pole of the magnet) has magnetized the right side of the block.
<h3>
Direction of electric field in the magnetic material</h3>
The direction of electric field of the atom of the magnetic material is unpolarized.
From the diagram in the image, the right hand side of the magnetic material is being attracted to south pole of the magnet.
Thus, we can conclude that, the magnet has magnetized the right side of the block.
Learn more about magnetic material here: brainly.com/question/22074447
#SPJ1
Correct answer choice is:
b) Solar flares are spots hotter than the surrounding, therefore they are brighter than the rest, and they form where prominences start or end on the surface.
Solar flares eject coronal mass, they eject electrons, protons, and ions from the Sun. They<span> produce high energy particles and radiation that are dangerous to living organisms. </span>The earth encompasses a natural protection against these charged particles. Earth's magnetic field and atmosphere protect us from these particles.