Answer:
a) They are in the same point
b) t = 0 s, t = 2.27 s, t = 5.73 s
c) t = 1 s, t = 4.33 s
d) t = 2.67 s
Explanation:
Given equations are:


Constants are:

a) "Just after leaving the starting point" means that t = 0. So, if we look the equations, both
and
depend on t and don't have constant terms.
So both cars A and B are in the same point.
b) Firstly, they are in the same point in x = 0 at t = 0. But for generalized case, we must equalize equations and solve quadratic equation where roots will give us proper t value(s).


s,
s
c) Since the distance isn't changing, the velocities are equal. To find velocities, we need to take the derivatives of both equations with respect to time and equalize them.

s,
s
d) For same acceleration, we we need to take the derivatives of velocity equations with respect to time and equalize them.
s
1. calculate the value of acceleration that objects gains in that period of time
•calculating acceleration
5.50 = 1/2at^2
5.50*2/t^2 = a
11.00/0.657 = a
16.74=a
now you got the acceleration
2. you have laws of gravitation for that
g = Gm/r^2
where g is the acceleration value
16.74 = 6.754*10^-11 × m/ 6.28*10^4
105.14*10^4 /6.754*10-11 = m
15.567*10^15 = m
that would be the mass of the planet ...
Answer: Brownion motion is the erratic random movement of microscopic particles in a fluid, as a result of continuous bombardment from molecules of the surrounding medium.
Explanation:
Brownian motion is the random movement of particles in a fluid due to their collisions with other atoms or molecules.
Answer:
The speed will be "18km/s". A further explanation is given below.
Explanation:
According to the question, the values are:
Wavelength,



As we know,
⇒ 
On substituting the values, we get
⇒ 
⇒ 
⇒ 
⇒ 
or,
⇒ 
Ek = (m*V^2) / 2 where m is mass and V is speed, then we can take this equation and manipulate it a little to isolate the speed.
Ek = mv^2 / 2 — multiply both sides by 2
2Ek = mv^2 — divide both sides by m
2Ek / m = V^2 — switch sides
V^2 = 2Ek / m — plug in values
V^2 = 2*30J / 34kg
V^2 = 60J/34kg
V^2 = 1.76 m/s — sqrt of both sides
V = sqrt(1.76)
V = 1.32m/s (roughly)