They are held together because of Strong Nuclear Force.
Answer:
a) t = 0.74s
b) D = 4.76m
c) Vf = 5.35m/s
Explanation:
The ball starts rolling when Vf = ωf*R.
We know that:
Vf = Vo - a*t
ωf = ωo + α*t
With a sum of forces on the ball:




With a sum of torque on the ball:



Replacing both accelerations:


t=0.74s
The distance will be:


Final velocity:

Vf=5.35m/s
Answer:
On the magnitude of the charges, on their separation and on the sign of the charges
Explanation:
The magnitude of the electric force between two charges is given by

where
k is the Coulomb's constant
q1, q2 are the magnitudes of the two charges
r is the separation between the charges
From the formula, we see that the magnitude of the force depends on the following factors:
- magnitude of the two charges
- separation between the charges
Moreover, the direction of the force depends on the sign of the two charges. In fact:
- if the two charges have same sign, the force is repulsive
- if the two charges have opposite signs, the force is attractive
Answer:
300 cos 30 = 40 a + 40 * .2 * 10
Total force = mass * acceleration + frictional force
260 = 40 a + 80
a = 180 / 40 = 4.5 m/s^2
Check:
15 a + 15 * 10 * .2 = T acceleration of 15 kg block (assuming a = 4.5)
T = 15 (4.5) + 30 = 97.5 force required to accelerate 15 kg block
260 - 97.5 = 162.5 net force on 25 kg block
162.5 = 4.5 (25) + 25 * 10 * .2
162.5 = 112.5 + 50 = 162.5
4.5 m/s^2 checks out as correct