Answer:
The force between charges is
.
Explanation:
The Coulomb force
between the two charges
and
separated by distance
is given by the equation

where
is the coulombs constant, and has the value
.
Now in our case

and
,
therefore, the Coulomb force between the charges is


Answer:
∑ τ =0, L₀ = 
Explanation:
In a circular turning movement, when the arms are extended and then contracted in two possibilities:
- They are lowered the force of gravity is what pulls them, the tension of the muscle becomes zero to allow this movement.
In this movement the force is vertical(gravity) and the movement of the center of mass of each arm is vertical, so that the work is the weight value of the arm by the distance traveled by the center of mass.
- Another possibility is that the arms have stuck to the body, in this case the person's muscles perform the force, this force is horizontal and the displacement is the horizontal of the center of mass of the arms from the extended position to the contracted
In these movements the torque of the external force is equal for each arm, but in the opposite direction, so they are canceled where a net torque of zero, this causes the angular momentum to be preserved, which changes is the moment of inertia of the system and therefore you must also change the angular velocity to keep your product constant
∑ τ =0
L₀ = 
I₀ w₀ = I w
Answer:
B and C
Explanation:
Because EMWs are varying magnetic and electric radiation traveling at 90° to each other propagating energy form one place to another through vibration of these magnetic and electric fields
Answer:
Newton's second law
Explanation:
The relationship between mass and acceleration is described in Newton's Second Law of Motion. His Second Law states that the more mass an object has, more force is necessary for it to accelerate.