Remember Coulomb's law: the magnitude of the electric force F between two stationary charges q₁ and q₂ over a distance r is

where k ≈ 8,98 × 10⁹ kg•m³/(s²•C²) is Coulomb's constant.
8.1. The diagram is simple, since only two forces are involved. The particle at Q₂ feels a force to the left due to the particle at Q₁ and a downward force due to the particle at Q₃.
8.2. First convert everything to base SI units:
0,02 µC = 0,02 × 10⁻⁶ C = 2 × 10⁻⁸ C
0,03 µC = 3 × 10⁻⁸ C
0,04 µC = 4 × 10⁻⁸ C
300 mm = 300 × 10⁻³ m = 0,3 m
600 mm = 0,6 m
Force due to Q₁ :

Force due to Q₃ :

8.3. The net force on the particle at Q₂ is the vector

Its magnitude is

and makes an angle θ with the positive horizontal axis (pointing to the right) such that

where we subtract 180° because
terminates in the third quadrant, but the inverse tangent function can only return angles between -90° and 90°. We use the fact that tan(x) has a period of 180° to get the angle that ends in the right quadrant.
The hand saw would involve more work because it takes more time and effort.
Answer:
The buoyant force is 3778.8 N in upward.
Explanation:
Given that,
Mass of balloon = 222 Kg
Volume = 328 m³
Density of air = 1.20 kg/m³
Density of helium = 0.179 kg/m³
We need to calculate the buoyant force acting
Using formula of buoyant force

Where,
= density of air
V = Volume of balloon
g = acceleration due to gravity
Put the value into the formula


This buoyant force is in upward direction.
Hence, The buoyant force is 3778.8 N in upward.
Answer:
The average speed of the blood in the capillaries is 0.047 cm/s.
Explanation:
Given;
radius of the aorta, r₁ = 1 cm
speed of blood, v₁ = 30 cm/s
Area of the aorta, A₁ = πr₁² = π(1)² = 3.142 cm²
Area of the capillaries, A₂ = 2000 cm²
let the average speed of the blood in the capillaries = v₂
Apply continuity equation to determine the average speed of the blood in the capillaries.
A₁v₁ = A₂v₂
v₂ = (A₁v₁) / (A₂)
v₂ = (3.142 x 30) / (2000)
v₂ = 0.047 cm/s
Therefore, the average speed of the blood in the capillaries is 0.047 cm/s.
Answer:
ms⁻¹
Explanation:
= diameter of merry-go-round = 4 m
= radius of merry-go-round =
=
= 2 m
= moment of inertia = 500 kgm²
= angular velocity of merry-go-round before ryan jumps = 2.0 rad/s
= angular velocity of merry-go-round after ryan jumps = 0 rad/s
= velocity of ryan before jumping onto the merry-go-round
= mass of ryan = 70 kg
Using conservation of angular momentum



ms⁻¹