A). Both the energy and the wave travel in the same direction.
If they didn't, they'd wind up in different cities almost instantly.
Answer:
satellite B
Explanation:
A .F= G (mM)/r²
B .F= G (2mM)/r² = 2G (Mm)r²
C .F= G (3mM)/(2r)² = ¾G (mM)/r²
D .F= G (4mM)/(2r)² = G (mM)/r²
Answer:
Explanation:
The relation between activity and number of radioactive atom in the sample is as follows
dN / dt = λ N where λ is disintegration constant and N is number of radioactive atoms
For the beginning period
dN₀ / dt = λ N₀
58.2 = λ N₀
similarly
41 = λ N
dividing
58.2 / 41 = N₀ / N
N = N₀ x .70446
formula of radioactive decay
![N=N_0e^{-\lambda t }](https://tex.z-dn.net/?f=N%3DN_0e%5E%7B-%5Clambda%20t%20%7D)
![.70446 =e^{-\lambda t }](https://tex.z-dn.net/?f=.70446%20%3De%5E%7B-%5Clambda%20t%20%7D)
- λ t = ln .70446 = - .35
t = .35 / λ
λ = .693 / half life
= .693 / 5715
= .00012126
t = .35 / .00012126
= 2886.36
= 2900 years ( rounding it in two significant figures )
Planet Y has rotated by 135.5° through during this time.
To find the answer, we need to know about the relation between angle and radius of orbit.
<h3>What's the expression of angle in terms of radius?</h3>
- Angle= arc/radius
- As arc = orbital velocity × time,
angle= (orbital velocity × time)/radius
- Orbital velocity= √(GM/radius), G= gravitational constant and M = mass of sun
- So, angle = (√(GM)× time)/radius^3/2
<h3>What's is the angle rotated by planet Y after 5 years, if ratio of the radius of orbit of planet X and Y is 4:3 and planet X is rotated by 88°?</h3>
- Let Ф₁= angle rotated by planet Y, Ф₂= angle rotated by planet X
- As time = 5 years ( a constant)
- Ф₁/Ф₂= (radius of planet X / radius of planet Y)^(3/2)
- Ф₁= (radius of planet X / radius of planet Y)^(3/2) × Ф₂
= (4/3)^(3/2) × 88°
= 135.5°
Thus, we can conclude that Planet Y has rotated by 135.5° through during this time.
Learn more about the orbital velocity here:
brainly.com/question/22247460
#SPJ1