The amount of substance present in a certain object with a given half-life in terms of h can be expressed through the equation,
A(t) = (A(o))(0.5)^(t/h)
where A(t) is the amount of substance after t years and A(o) is the original amount. In this item we are given that A(t)/A(o) is equal to 0.89. Substituting the known values,
0.89 = (0.5)(t / 5730 years)
The value of t from the equation is 963.34 years.
<em>Answer: 963 years</em>
Answer:
P = 13.5 atm
Explanation:
Given that
No. of moles, n = 20 moles
Volume of nitrogen gas = 36.2 L
Temperature = 25°C = 298 K
We need to find the pressure of the gas. Using the ideal gas equation
PV = nRT
Where
R is gas constant, 
So,

so, the pressure of the gas is equal to 13.5 atm.
Lanthanide belongs to period 6, and actinides belongs to period 7
Hey there!
325 mL in liters:
325 / 1000 => 0.325 L
1 mole ( Ne ) ------------- 22.4 L ( at STP )
moles ( Ne ) ------------ 0.325 L
moles Ne = 0.325 * 1 / 22.4
moles Ne = 0.325 / 22.4
moles Ne = 0.0145 moles
hope this helps!
Answer:
B.) Go down
Explanation:
Hello,
In this case, a strong base like NaOH has a high pH based on the scale wherein 7 is neutral, above 7 is basic and below 7 is acid. In such a way, by adding an acid, having a low pH, once it is added, the pH will go down until the equivalence point, which for strong base and strong acid should be 7.
Best regards.