The concentration of ClO₂⁻ at equilibrium if the initial concentration of HClO₂ is 0.0654.
<h3>What is concentration?</h3>
The concentration of any substance is the quantity of that substance in per square of the space or container.
The reaction is
HClO₂ + H₂O <=> H₃O⁺ + ClO₂⁻
The pH is 0.454 M
Ka = [H₃O⁺][ClO₂⁻ ] / [HClO₂]
2. 25 × 10⁻² m = [x][x] / 0.454-x]
2 + 0.011 - 0.004994 = 0
solve the quadratic equation
x = 0.0654 = [H3O+] = [ClO2-]
pH = -log (H3O+)
pH = -log(0.0654)
pH = 1.2
equilibrium concentrations of
[HClO2] = 0.454 -x = 0.454 -0.0654 = 0.3886 M
[ClO2- ] = x = 0.0654
Thus, the equilibrium concentrations is 0.0654.
To learn more about concentration, refer to the link:
brainly.com/question/16645766
#SPJ4
Answer:
The reasons why the seemingly floating bubbles disappear was that they tend to loss their latent heat to the water molecules at the surface water.
Explanation:
Heat energy has a considerable effect on the velocity of molecules including water. The water molecules below the container will receive much more heat energy than those above it. This heat energy in the form of specific heat capacity and latent heat that result in the increase in the speed of individual molecules of water and finally to the escape of the molecules to a colder region of the container, in this case the upper region. At the collision of the bottom water to the surface water, they tend to exchange their heat content, the hotter molecules will lose their heat to the cold ones. When the formerly hot molecules encounter this, it will result in lowering the temperature and consequentially to the reduction of their movement, once in the form of bubble, now become ordinary water. This convectional transfer of heat energy will continue until the whole system has a uniform temperature depending on the consistency of the heat source.
Deposition. Particles settle to the bottom of still water after being eroded.
Answer:
put a test tube over the opening, remove it and quickly put a lit splint near the mout or in the tube. if you hear a squeaky pop it is hydrogen.
Explanation:
hydrogen ignites in air.