To find the temperature in the problem, we apply the ideal gas law, PV=nRT where R=8.314 Pam3/mol K. Substituting the given, T= 153,000 Pa*1.5x10^-4 m3/ [(0.75 mol)(<span>8.314 Pam3/mol K)]. The temperature is equal to 3.68 kelvin. </span>
Alcohol = 78c
sodium chloride = 1413c
water = 100c
<span>Glucose does not have a boiling point firstly it decomposes into carbon and H2O then boils
hope it helps.
</span>
Answer:
All energy sources have some impact on our environment. Fossil fuels—coal, oil, and natural gas—do substantially more harm than renewable energy sources by most measures, including air and water pollution, damage to public health, wildlife and habitat loss, water use, land use, and global warming emissions
Answer:
El Niño is associated with death and disease, most of which result from weather-related disasters such as floods and droughts. In 1997 Central Ecuador and Peru suffered rainfall more than 10 times normal, which caused flooding, extensive erosion and mudslides with loss of lives, destruction of homes and food supplies.
The balanced chemical equation is given as:
2CH3CH2OH(l) → CH3CH2OCH2CH3(l) + H2O(l)
We are given the yield of CH3CH2OCH2CH3 and the amount of ethanol to be used for the reaction. These values will be the starting point for the calculations.
Theoretical amount of product produced:
329 g CH3CH2OH ( 1 mol / 46.07 g ) ( 1 mol CH3CH2OCH2CH3 / 2 mol CH3CH2OH ) (74.12 g / mol ) = 264.66 g CH3CH2OCH2CH3
% yield = .775 = actual yield / 264.66
actual yield = 205.11 g CH3CH2OCH2CH3