The rate of the reaction is measurable quantity that refers to the amount or how much is are chemical substances reagents used up or converted into the product over some period of time.
Rate = change in the amount/time.
This can indirectly be observed through many ways, such as the volume of gas given off if the byproduct is a gas being produced, the colour of the solution etc.
I’ve only had one and it didn’t flow so ion think so
Answer:
Iron(III) oxide and its common name is Ferric Oxide
Explanation:
Answer: The theoretical yield of aspirin is 4.14 g
Explanation:
To calculate the moles :
mass of acetic anhydride =
According to stoichiometry :
1 mole of salycylic acid require 1 mole of acetic anhydride
Thus 0.023 moles of salycylic acid require=
of acetic anhydride
Thus salycylic acid is the limiting reagent as it limits the formation of product and acetic anhydride is the excess reagent.
As 1 mole of salycylic give = 1 mole of aspirin
Thus 0.023 moles of salycylic acid give =
of aspirin
Mass of aspirin =
Thus theoretical yield of aspirin is 4.14 g
Answer:
Forces between similar molecules are said to be <em>cohesive</em> while those between different types of molecules are said to be <em>adhesive</em>.
Water 'beads' due to its strong <em>cohesive</em> forces. The meniscus of water in a glass tube is <em>concave</em> because the <em>adhesive</em> forces are strong.
Explanation:
The water in a tube has stronger adhesive forces between the water and glass molecules, so the cohesive forces between water molecules are weaker. That makes the water 'ascend' through the tube, giving a concave form of the meniscus. Another example is mercury, which is the opposite. In this case, the cohesive forces are stronger than the adhesive ones, thus the meniscus is convex.