Answer:
C
Explanation:
horizintal speed stays same
only vertical speed changes
so H speed will stay 30 m/s
Answer:
A.) 8 m/s
B.) 7.0 m
Explanation:
Given that a block is given an initial velocity of 8.0 m/s up a frictionless 28° inclined plane.
(a) What is its velocity when it reaches the top of the plane?
Since the plane is frictionless, the final velocity V will be the same as 8 m/s
The velocity will be 8 m/s as it reaches the top of the plane.
(b) How far horizontally does it land after it leaves the plane?
For frictionless plane,
a = gsinø
Acceleration a = 9.8sin28
Acceleration a = 4.6 m/s^2
Using the third equation of motion
V^2 = U^2 - 2as
Substitute the a and the U into the equation. Where V = 0
0 = 8^2 - 2 × 4.6 × S
9.2S = 64
S = 64/9.2
S = 6.956 m
S = 7.0 m
Answer:
the speed of the satellite is 12,880.53 km/h
Explanation:
Given;
radius of the circular orbit, r = 24,600 km
time taken to revolve around Earth, t = 12 hours
The circumference of the satellite is calculated as;
L = 2πr
L = 2π x 24,600 km
L = 49,200π km
L = 154,566.36 km
The speed of the satellite;
v = L/t
v = 154,566.36 / 12
v = 12,880.53 km/h
Therefore, the speed of the satellite is 12,880.53 km/h
<u>Metal detectors work by transmitting an electromagnetic field from the search coil into the ground. Any metal objects (targets) within the electromagnetic field will become energised and retransmit an electromagnetic field of their own. The detector’s search coil receives the retransmitted field and alerts the user by producing a target response. metal detectors are capable of discriminating between different target types and can be set to ignore unwanted targets.
</u>
1. Search Coil
The detector’s search coil transmits the electromagnetic field into the ground and receives the return electromagnetic field from a target.
2. Transmit Electromagnetic Field (visual representation only - blue)
The transmit electromagnetic field energises targets to enable them to be detected.
3. Target
A target is any metal object that can be detected by a metal detector. In this example, the detected target is treasure, which is a good (accepted) target.
<em>hope this helps PLEASE MARK AS BRAINLIEST:)</em>
8 m/s
Explanation:
Using conservation of momentum :-

Where:
m1 = Mass of first vehicle
m2 = Mass of second vehicle
u1 = initial speed of first vehicle
v1 = initial speed of second vehicle
u2 = Final speed of first vehicle
v1 = Final speed of second vehicle
From the received informations:



So

Now divide both sides by m1 :-


Therefore, final answer is 8 m/s