1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leni [432]
3 years ago
15

An artificial satellite is moving in a circular orbit of radius 24,600 km. Calculate its speed if it takes 12hours to revolve ar

ound the earth.
Physics
1 answer:
denis-greek [22]3 years ago
6 0

Answer:

the speed of the satellite is 12,880.53 km/h

Explanation:

Given;

radius of the circular orbit, r = 24,600 km

time taken to revolve around Earth, t = 12 hours

The circumference of the satellite is calculated as;

L = 2πr

L = 2π x 24,600 km

L = 49,200π km

L = 154,566.36 km

The speed of the satellite;

v = L/t

v = 154,566.36 / 12

v = 12,880.53 km/h

Therefore, the speed of the satellite is 12,880.53 km/h

You might be interested in
A 600g toy train completes 10 laps of its circular track in 1 min 20s. If the radius of the track is 1.2 m, Find the centripetal
Lynna [10]

Wow !  This will take more than one step, and we'll need to be careful
not to trip over our shoe laces while we're stepping through the problem.

The centripetal acceleration of any object moving in a circle is

                          (speed-squared)  /  (radius of the circle)  .

Notice that we won't need to use the mass of the train.

We know the radius of the track.  We don't know the trains speed yet,
but we do have enough information to figure it out.  That's what we
need to do first.

Speed  =  (distance traveled) / (time to travel the distance).

Distance = 10 laps of the track.   Well how far is that ? ? ?

1 lap = circumference of the track = (2π) x (radius) =  2.4π  meters

10 laps =  24π  meters.

Time = 1 minute 20 seconds  =  80 seconds

The trains speed is  (distance) / (time)

                               =  (24π meters) / (80 seconds)

                               =        0.3 π  meters/second .

NOW ... finally, we're ready to find the centripetal acceleration.

                                 <span> (speed)²  /  (radius)

                           =    (0.3π m/s)²  /  (1.2 meters)

                           =    (0.09π m²/s²)  /  (1.2 meters)

                           =    (0.09π  /  1.2)   m/s²

                           =          0.236  m/s²  .        (rounded)

If there's another part of the problem that wants you to find
the centripetal FORCE ...

Well,       Force = (mass) · (acceleration) .

We know the mass, and we ( I ) just figured out the acceleration,
so you'll have no trouble calculating the centripetal force.       </span>
4 0
3 years ago
This same car gets pulled over for speeding, and goes from 68 m/s to 0 m/s in 14
Harrizon [31]

Answer:

the acceleration of the car is -4.9m/s2.

the direction is opposite to the actual direction, since the acceleration is negative.

3 0
3 years ago
An ice cream truck is going 25m/s to the East. It accelerates to 45m/s in the same direction over 5s. What is its acceleration?
Naya [18.7K]

Hello!

We can use the kinematic equation:
a = \frac{v_f - v_i}{t}

a = acceleration (m/s²)

vf = final velocity (45 m/s)
vi = initial velocity (25 m/s)

t = time (5 sec)

Plug in the givens:
a = \frac{45-25}{5} = \frac{20}{5} = \boxed{4 m/s^2}

6 0
2 years ago
A 50-kg satellite circles the Earth in an orbit with a period of 120 min. What minimum energy is required to change the orbit to
uysha [10]

Answer: 2.94×10^8 J

Explanation:

Using the relation

T^2 = (4π^2/GMe) r^3

Where v= velocity

r = radius

T = period

Me = mass of earth= 6×10^24

G = gravitational constant= 6.67×10^-11

4π^2/GMe = 4π^2 / [(6.67x10^-11 x6.0x10^24)]

= 0.9865 x 10^-13

Therefore,

T^2 = (0.9865 × 10^-13) × r^3

r^3 = 1/(0.9865 × 10^-13) ×T^2

r^3 = (1.014 x 10^13) × T^2

To find r1 and r2

T1 = 120min = 120*60 = 7200s

T2 = 180min = 180*60= 10800s

Therefore,

r1 = [(1.014 x 10^13)7200^2]^(1/3) = 8.07 x 10^6 m

r2 = [(1.014 x 10^13)10800^2]^(1/3) = 10.57 x 10^6 m

Required Mechanical energy

= - GMem/2 [1/r2 - 1/r1]

= (6.67 x 10^-11 x 6.0 x 10^24 * 50)/2 * [(1/8.07 × 10^-6 )- (1/10.57 × 10^-6)]

= (2001 x 10^7)/2 * (0.1239 - 0.0945)

= (1000.5 × 10^7) × 0.0294

= 29.4147 × 10^7 J

= 2.94 x 10^8 J.

6 0
3 years ago
Consider a sample containing 1.70 mol of an ideal diatomic gas.
babunello [35]

I don't know

because I don't know

7 0
3 years ago
Other questions:
  • HELLLLLP PLEASE, thank u :)
    6·1 answer
  • An area where the particles in a medium are spaced close together is called a _____.
    9·2 answers
  • A rock held at a height of 3 meters what a mass of 2kg has what energy
    13·1 answer
  • An old millstone, used for grinding grain in a gristmill, is a solid cylindrical wheel that can rotate about its central axle wi
    10·1 answer
  • A 4 kg block is launched up a 30° ramp with an initial speed of 5 m/s. The coefficient of kinetic friction between the block and
    13·1 answer
  • A 20 cm square frame that can rotate about the 00' axis is placed in a homogeneous magnetic field with 0.5T induction directed v
    15·1 answer
  • Which of the following is NOT a correct statement?*
    7·1 answer
  • Nearly of women who had recently given birth screen positive for peripartum onset depression.
    9·2 answers
  • What parameters affects the inductance of a coil​
    5·1 answer
  • Find the kenetic energy of a car of mass 700kg racing with a velocity of 10m/s
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!