The molar mass of citric acid (c6h8o7) is 192.124g/mol
The molar mass of baking soda (nahco3) is 84.007g/mol
The molar mass of a chemical compound is defined as the mass of a sample of that compound divided by the amount of substance in that sample and is measured in moles. Molar mass is a mass property, not a molecular property of a substance.
Molar mass is the mass of 1 mole of the sample. To find the molar mass, add up the atomic masses (atomic weights) of all the atoms in the molecule. Use the masses listed in the periodic table or atomic weight table to determine the atomic mass of each element.
Learn more about molar mass here:brainly.com/question/15476873
#SPJ1
According to Balance chemical equation,
N₂ + 3 H₂ → 2 NH₃
1 mole of Nitrogen reacts with 3 moles of Hydrogen to produce 2 mole of Ammonia.
It is known that i mole of any gas at standard temperature and pressure occupies 22.4 L of Volume. So, we can also say,
22.4 L (1 × 22.4) of Nitrogen gas (in question it is taken in excess) reacts with 67.2 L (22.4 × 3) of Hydrogen gas to produce 44.8 L (22.4 × 2) of Ammonia.
Result:
44.8 L is the correct answer.
Answer:
Option D - 10,000 years ago in the Middle East
91 grams of sodium azide required to decompose and produce 2.104 moles of nitrogen.
Explanation:
2NaN3======2Na+3N2
This is the balanced equation for the decomposition and production of sodium azide required to produce nitrogen.
From the equation:
2 moles of NaNO3 will undergo decomposition to produce 3 moles of nitrogen.
In the question moles of nitrogen produced is given as 2.104 moles
so,
From the stoichiometry,
3N2/2NaN3=2.104/x
= 3/2=2.104/x
3x= 2*2.104
= 1.4 moles
So, 1.4 moles of sodium azide will be required to decompose to produce 2.104 moles of nitrogen.
From the formula
no of moles=mass/atomic mass
mass=no of moles*atomic mass
1.4*65
= 91 grams of sodium azide required to decompose and produce 2.104 moles of nitrogen.