False. Because gas to a liquid is called condensation
Answer:
Fe(NO₃)₃ + 3KSCN → Fe(SCN)₃ + 3KNO₃
Explanation:
Chemical equation:
Fe(NO₃)₃ + KSCN → Fe(SCN)₃ + KNO₃
Balanced Chemical equation:
Fe(NO₃)₃ + 3KSCN → Fe(SCN)₃ + 3KNO₃
Type of reaction:
It is double displacement reaction.
In this reaction the anion or cation of both reactants exchange with each other. In given reaction the cation Fe⁺³ exchange with cation K⁺.
The given reaction equation is balanced so there are equal number of atoms of each elements are present on both side of equation and completely hold the law of conservation of mass.
Double replacement:
It is the reaction in which two compound exchange their ions and form new compounds.
AB + CD → AC +BD
The balance chemical equation is :
2HCL + Na2CO3 -----> 2NaCl + H2O + CO2
According to Question,
Given,
Molarity of HCL = 1.75 m
Sodium Carbonate (Na2CO3) = 0.100 m
For finding out the molarity,
c = n solute / Vsolution => n = c.Vsolution
nCO^2-3 = 0.100 mol L^-1 . 0.750 L = 0.0750 moles of CO^2-3
0.0750 moles of CO^2-3 . 2 moles H3O^+ / 1 mole CO^2-3
= 0.150 moles of H3O^+
As we have already know the molarity of HCL , we easily calculate what volumes by many moles.
c = nsolute / Vsolution => Vsolution = nsolute / c
VH3O^+ = 0.150 moles / 1.75 mol L^-1 = 0.0857 L
To know more about Molarity here :
brainly.com/question/8732513?referrer=searchResults
#SPJ4
706.1652 g is the molar mass of 4.68 mol of sodium bromate.
Given:
Sodium bromate is used in a mixture which dissolves gold from its ores.
Moles of sodium bromate= 4.68 mol
Molar mass of sodium bromate = 150.89 g/mol number of moles × mol
= 150.89 × 4.68
= 706.1652 g
Therefore, 706.1652 g is the molar mass of 4.68 mol of sodium bromate.
Learn more about molar mass here:
brainly.com/question/837939
#SPJ4