1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natalka [10]
3 years ago
8

Use what you learned in the passage to

Physics
2 answers:
Katyanochek1 [597]3 years ago
7 0

Answer:

A

Explanation:

Dennis, 60 feet in 0.5 seconds

Lelu [443]3 years ago
3 0
A . Dennis , 60 feet in 0.5 seconds
You might be interested in
An object at rest does not _____ and an object in motion does not _____, unless an _____ force acts upon it
mel-nik [20]

Answer:

An object at rest does not move and an object in motion does not change its velocity, unless an external force acts upon it

Explanation:

This statement is also known as Newton's first law, or law of  inertia.

It states that the state of motion of an object can be changed only if there is an external force (different from zero) acting on it: therefore

- If an object is at rest, it will remain at rest if there is no force acting on it

- If an object is moving, it will continue moving at constant velocity if there is no force acting on it

This phenomenon can be also understood by looking at Newton's second law:

F = ma

where

F is the net force on an object

m is the mass

a is the acceleration

If the net force is zero, F = 0, the acceleration of the object is also zero, a = 0: therefore, the velocity of the object does not change, and it will continue moving at the same velocity (which can be zero, if the object was at rest).

5 0
3 years ago
What investigations allow for the control of variables
lina2011 [118]
Most as long the hypothesis is a good answer and can be answered 
7 0
2 years ago
Read 2 more answers
Did I do these questions correctly?
SOVA2 [1]
Yes, they seem right to me.
4 0
3 years ago
Please help with these i dont know how to do them
Svetradugi [14.3K]

<em><u>2</u></em><em><u>0</u></em><em><u>.</u></em><em><u>0</u></em><em><u>M</u></em><em><u>/</u></em><em><u>S</u></em><em><u>. </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u>IS</u></em><em><u> </u></em><em><u>THE</u></em><em><u> </u></em><em><u>HORIZONTAL</u></em><em><u> </u></em><em><u>VELOCITY</u></em><em><u> </u></em><em><u>OF</u></em><em><u> </u></em><em><u>THE</u></em><em><u> </u></em><em><u>BALL</u></em><em><u> </u></em><em><u>JUST</u></em><em><u> </u></em><em><u>BEFORE</u></em><em><u> </u></em><em><u>IT</u></em><em><u> </u></em><em><u>REA</u></em><em><u>CHES</u></em><em><u> </u></em><em><u>THE</u></em><em><u> </u></em><em><u>GROUND</u></em>

<em><u>1</u></em><em><u>2</u></em><em><u>.</u></em><em><u>2</u></em><em><u> </u></em><em><u>SECONDS</u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u>IS</u></em><em><u> </u></em><em><u>THE</u></em><em><u> </u></em><em><u>APPROXIMATE</u></em><em><u> </u></em><em><u>TOTAL</u></em><em><u> </u></em><em><u>TIME</u></em><em><u> </u></em><em><u>REQUIRED</u></em><em><u> </u></em><em><u>FOR</u></em><em><u> </u></em><em><u>THE</u></em><em><u> </u></em><em><u>BALL</u></em>

3 0
3 years ago
How do you calculate the net force, i need a full explanation PLEASE
Lina20 [59]

Answer:

Once you have drawn the free-body diagram, you can use vector addition to find the net force acting on the object. We will consider three cases as we explore this idea:

Case 1: All forces lie on the same line.

If all of the forces lie on the same line (pointing left and right only, or up and down only, for example), determining the net force is as straightforward as adding the magnitudes of the forces in the positive direction, and subtracting off the magnitudes of the forces in the negative direction. (If two forces are equal and opposite, as is the case with the book resting on the table, the net force = 0)

Example: Consider a 1-kg ball falling due to gravity, experiencing an air resistance force of 5 N. There is a downward force on it due to gravity of 1 kg × 9.8 m/s2 = 9.8 N, and an upward force of 5 N. If we use the convention that up is positive, then the net force is 5 N - 9.8 N = -4.8 N, indicating a net force of 4.8 N in the downward direction.

Case 2: All forces lie on perpendicular axes and add to 0 along one axis.

In this case, due to forces adding to 0 in one direction, we only need to focus on the perpendicular direction when determining the net force. (Though knowledge that the forces in the first direction add to 0 can sometimes give us information about the forces in the perpendicular direction, such as when determining frictional forces in terms of the normal force magnitude.)

Example: A 0.25-kg toy car is pushed across the floor with a 3-N force acting to the right. A 2-N force of friction acts to oppose this motion. Note that gravity also acts downward on this car with a force of 0.25 kg × 9.8 m/s2= 2.45 N, and a normal force acts upward, also with 2.45 N. (How do we know this? Because there is no change in motion in the vertical direction as the car is pushed across the floor, hence the net force in the vertical direction must be 0.) This makes everything simplify to the one-dimensional case because the only forces that don’t cancel out are all along one direction. The net force on the car is then 3 N - 2 N = 1 N to the right.

Case 3: All forces are not confined to a line and do not lie on perpendicular axes.

If we know what direction the acceleration will be in, we will choose a coordinate system where that direction lies on the positive x-axis or the positive y-axis. From there, we break each force vector into x- and y-components. Since motion in one direction is constant, the sum of the forces in that direction must be 0. The forces in the other direction are then the only contributors to the net force and this case has reduced to Case 2.

If we do not know what direction the acceleration will be in, we can choose any Cartesian coordinate system, though it is usually most convenient to choose one in which one or more of the forces lie on an axis. Break each force vector into x- and y-components. Determine the net force in the x direction and the net force in the y direction separately. The result gives the x- and y-coordinates of the net force.

Example: A 0.25-kg car rolls without friction down a 30-degree incline due to gravity.

We will use a coordinate system aligned with the ramp as shown. The free-body diagram consists of gravity acting straight down and the normal force acting perpendicular to the surface.

We must break the gravitational force in to x- and y-components, which gives:

F_{gx} = F_g\sin(\theta)\\ F_{gy} = F_g\cos(\theta)F

gx

​

=F

g

​

sin(θ)

F

gy

​

=F

g

​

cos(θ)

Since motion in the y direction is constant, we know that the net force in the y direction must be 0:

F_N - F_{gy} = 0F

N

​

−F

gy

​

=0

(Note: This equation allows us to determine the magnitude of the normal force.)

In the x direction, the only force is Fgx, hence:

F_{net} = F_{gx} = F_g\sin(\theta) = mg\sin(\theta) = 0.25\times9.8\times\sin(30) = 1.23 \text{ N}F

net

​

=F

gx

​

=F

g

​

sin(θ)=mgsin(θ)=0.25×9.8×sin(30)=1.23 N

7 0
3 years ago
Other questions:
  • In the United States, car accidents are the leading cause of death for teenagers. Wearing seat belts helps save lives. Describe
    10·1 answer
  • A major-league pitcher can throw a ball in excess of 40.1 m/s. If a ball is thrown horizontally at this speed, how much will it
    14·1 answer
  • A jet plane flying 600 m/s experiences an acceleration of 4.0 g when pulling out of the circular section of a dive. What is the
    12·1 answer
  • Which kind of pressure prevents stars of extremely large mass from forming?
    15·2 answers
  • If the voltage impressed across a circuit is held constant while the resistance is halved, what change occur?
    5·1 answer
  • A 2kg object is tied to the end of a cord and whirled in a horizontal circle of radius 2 m. If the body makes three complete rev
    14·1 answer
  • Silver has a mass of 10.5 grams and a volume of 19.3 cm3. What is its density?
    9·1 answer
  • Where is the centre of mass of a system of two particles is situated?​
    10·1 answer
  • What does the law of conservation of matter state? Question 4 options: Matter can be created, but it can never be destroyed. Mat
    12·1 answer
  • At what speed should a ball of mass 2 kg be rolled in order to reach the other side of
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!