1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bumek [7]
3 years ago
14

An elevator moves from rest to 2 m/s over 8 seconds. What is the elevator's acceleration?

Physics
1 answer:
riadik2000 [5.3K]3 years ago
7 0

Answer:

0.25m/s^2

Explanation:

Acceleration= Change in velocity / time

= 2 - 0 / 8

= 2 /8

= 0.25

You might be interested in
A 46 g domino slides down a 30 degrees incline at a constant speed. What is the coefficient of friction?
blondinia [14]

Answer:

40

Explanation:

30

6 0
3 years ago
A light-year is a unit of a. time. c. mass. b. distance. d. density. please select the best answer from the choices provided a b
11111nata11111 [884]

Answer:

distance

Explanation:

it is the distance traveled by light in one year

3 0
1 year ago
Read 2 more answers
A mass weighting 16 lbs stretches a spring 3 inches. The mass is in a medium that exerts a viscous resistance of 20 lbs when the
const2013 [10]

Answer:

The equation for the object's displacement is u(t)=0.583cos11.35t

Explanation:

Given:

m = 16 lb

δ = 3 in

The stiffness is:

k=\frac{m}{\delta } =\frac{16}{3} =5.33lb/in

The angular speed is:

w=\sqrt{\frac{k}{m} } =\sqrt{\frac{5.33*386.4}{16} } =11.35rad/s

The damping force is:

F_{D} =cu

Where

FD = 20 lb

u = 4 ft/s = 48 in/s

Replacing:

c=\frac{F_{D} }{u} =\frac{20}{48} =0.42lbs/in

The critical damping is equal:

c_{c} =\frac{2k}{w} =\frac{2*5.33}{11.35} =0.94lbs/in

Like cc>c the system is undamped

The equilibrium expression is:

u(t)=u(o)coswt+u'(o)sinwt\\u(o)=7=0.583\\u'(o)=0\\u(t)=0.583coswt\\u(t)=0.583cos11.35t

3 0
3 years ago
Explain why a moving object cannot come to a stop instantaneously (in zero seconds). Hint: Think about the acceleration that wou
gizmo_the_mogwai [7]
To stop instantly, you would need infinite deceleration. This in turn, requires infinite force, as demonstrable with this equation:F=ma<span>So when you hit a wall, you do not instantly stop (e.g. the trunk of the car will still move because the car is getting crushed). In a case of a change in momentum, </span><span><span>m<span>v⃗ </span></span><span>m<span>v→</span></span></span>, we can use the following equation to calculate force:F=p/h<span>However, because the force is nowhere close to infinity, time will never tend to zero either, which means that you cannot come to an instantaneous stop.</span>
7 0
3 years ago
A football is thrown horizontally with an initial velocity of(16.6 {\rm m/s} ){\hat x}. Ignoring air resistance, the average acc
Ray Of Light [21]

Answer:

A) 16.6 m/s i -17.2 m/s j B) 23.9 m/s  c) 46º below horizontal.

Explanation:

A) Once released, the football is not under the influence of any external force in the horizontal direction, so it  continues moving at a constant speed equal to the initial velocity, i.e., 16.6 m/s.

If we choose the horizontal direction to be coincident with the x-axis, and make positive the direction towards the right (assuming that  this was the direction along which the football was thrown), we can write the horizontal component of the veelocity vector, as follows:

vₓ = 16.6 m/s i

In the vertical direction, the football, once released, is in free fall, starting from rest.

So, we can find the vertical component of the velocity vector, at a given point in time, applying the definition of acceleration, as follows:

vy = a*t = -g*t = -9.81 m/s²*1.75 s = -17.2 m/s

Assuming that the upward direction is the positive  for the y-axis (perpendicular to the chosen  x-axis), we can write the vertical component of  the velocity vector, at t=1.75 s, as follows:

vy = -17.2 m/s j

So, the velocity vector, in terms of the unit vectors i and j, can be written in this way:

v = 16.6 m/s i -17.2 m/s j

b) The magnitude of this vector can be found applying trigonometry, as the magnitude is the hypotenuse of a triangle with sides equal to vx and vy, as follows:

v =\sqrt{(16.6m/s)^{2}+ (-17.2m/s)^{2}} = 23.9 m/s

v = 23.9 m/s

c) The direction of the vector (below the horizontal) can be found as the angle which tangent is given by the quotient between vy and vx, as follows:

tg θ =\frac{-17.2}{16.6} =-1.036

⇒ θ = tg⁻¹ (-1.036) = 46º below horizontal.

6 0
3 years ago
Other questions:
  • How much work would be needed to raise the payload from the surface of the moon (i.e., x = r) to the "end of the universe"?
    11·2 answers
  • Question 1
    10·2 answers
  • 21. Which of the equations is balanced?
    9·1 answer
  • An object in circular motion has velocity that is constantly changing. The direction of the acceleration is
    15·1 answer
  • Convection can occur in which two substances?
    11·2 answers
  • Find the missing number for each unit rate? 10/2 =?/1 and 16/4=?/1
    14·1 answer
  • What are different ways the soil is important to the water cycle?
    7·1 answer
  • Deer ticks can carry both Lyme disease and human granulocytic ehrlichiosis (HGE). In a study of ticks in the Midwest, it was fou
    12·1 answer
  • What will the skydivers ke be when he land on the groun
    7·1 answer
  • The response of an object to the gravity is called ____
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!