Answer:
We kindly invite you to read carefully the explanation and check the image attached below.
Explanation:
According to this problem, the rocket is accelerated uniformly due to thrust during 30 seconds and after that is decelerated due to gravity. The velocity as function of initial velocity, acceleration and time is:
(1)
Where:
- Initial velocity, measured in meters per second.
- Final velocity, measured in meters per second.
- Acceleration, measured in meters per square second.
- Initial time, measured in seconds.
- Final time, measured in seconds.
Now we obtain the kinematic equations for thrust and free fall stages:
Thrust (
,
,
,
)
(2)
Free fall (
,
,
,
)
(3)
Now we created the graph speed-time, which can be seen below.
The answer is 21m because the motion is in one dimension with constant acceleration.
The initial velocity is 0, because it started from rest, the acceleration <span>ax</span> is <span>4.7<span>m<span>s2</span></span></span>, and the time t is <span>3.0s</span>
Plugging in our known values, we have
<span>Δx=<span>(0)</span><span>(3.0s)</span>+<span>12</span><span>(4.7<span>m<span>s2</span></span>)</span><span><span>(3.0s)</span>2</span>=<span>21<span>m</span></span></span>
knowledge of first aid ... eg St John Ambulance, Red Cross etc. I think that everyone in a school should be taught First Aid.
Answer:
How fast and efficient the energy is released.
Explanation:
Before burning the marshmallow energy is stored in it in the form of chemical bond energy or chemical potential energy. So upon burning this energy is released. So there will be a difference in energy release from a burned marshmallow and the one we eat straight from package.
Working...
length of wire L = 1.5 m
current I = 7 A
potential difference V = 68 Volt
According to Ohm's Law
V = IR
R = V/I
R = 68/7
R = 9.7 Ω