Answer:
V = 49.05 [m/s]
Explanation:
We can easily find the result using kinematics equations, first, we will find the distance traveled during the 5 seconds.

where:
Yo = initial position = 0
y = final position [m]
Vo = initial velocity = 0
t = time = 5 [s]
g = gravity aceleration = 9.81 [m/s^2]
The initial speed is zero, as the body drops without imparting an initial speed. Therefore:
y = 0 + (0*5) + (0.5*9.81*5^2)
y = 122.625[m]
Now using the following equation we can find the speed it reaches during the 5 seconds.
![v_{f} ^{2}= v_{i} ^{2}+(2*g*y)\\v_{f}=\sqrt{2*9.81*122.625} \\v_{f}=49.05 [m/s]](https://tex.z-dn.net/?f=v_%7Bf%7D%20%5E%7B2%7D%3D%20v_%7Bi%7D%20%5E%7B2%7D%2B%282%2Ag%2Ay%29%5C%5Cv_%7Bf%7D%3D%5Csqrt%7B2%2A9.81%2A122.625%7D%20%5C%5Cv_%7Bf%7D%3D49.05%20%5Bm%2Fs%5D)
This is most likely True. However, it could be also False. Let me explain.
There are many air pollutants that can be found outdoors and indoors. It does depend on what kind of indoor environment we're talking about. And also what kind of outdoor environment we're talking about. In both cases it depends on the context. If the indoor environment is quite toxic, then of course, there would be less cancer-causing air pollutants for a person outside. And the same is true for the other way around.
Answer:
Part a)

Part b)
this is a large potential which can not be possible because at this high potential the air will break down and the charge on the sphere will decrease.
Part C)
here we can assume the sphere is placed at vacuum so that there is no break down of air.
Explanation:
Part a)
As we know that the potential near the surface of metal sphere is given by the equation

here we have
Q = 8 C
R = 10.0 cm
now we have


Part b)
this is a large potential which can not be possible because at this high potential the air will break down and the charge on the sphere will decrease.
Part C)
here we can assume the sphere is placed at vacuum so that there is no break down of air.
Answer:
1/f = 1/D' + 1/D
The magnification equation relates the ratio of the image distance and object distance to the ratio of the image height (h^i) and object height (h^o). The magnification equation is stated as follows:
M= H^i/H^o = D^i/D^o