Answer:
45.93°
Explanation:
The angle of incidence is given as 32.7°
The refractive index of the water that is 
Refractive index of the air that is
(because the refractive index of air is 1 )
We have to find the angle at which the light leave the water means angle of refraction
So according to snell's law 


r =45.93°
So the light leave the water at an angle of 45.93°
The image distance when a boy holds a toy soldier in front of a concave mirror, with a focal length of 0.45 m. is -0.56 m.
<h3>What is image distance?</h3>
This is the distance between the image formed and the focus when an object is placed in front of a plane mirror.
To calculate the image distance, we use the formula below.
Formula:
- 1/f = 1/u+1/v........... Equation 1
Where:
- f = Focal length of the mirror
- v = Image distance
- u = object distance
From the question,
Given:
Substitute these values into equation 1 and solve for the image distance
- 1/0.45 = 1/0.25 + 1/v
- 2.22 = 4+1/v
- 1/v = 2.22-4
- 1/v = -1.78
- v = 1/(-1.78)
- v = -0.56 m
Hence, The image distance is -0.56 m.
Learn more about image distance here: brainly.com/question/17273444
Answer:
Impulse = change in momentum w bounce
There are 2 impulses acting. Recoil of the fan going the negative direction and the impulse of the air bouncing off the sail. The greater impulse will bounce so the direction will be to the right moving the craft.
Answer:
Layer 1, Rock 2, Rock 1, Fault
cardiac muscle is striated. Uniquely, the cells of this kind of muscle are joined strongly together at adherens junctions that “enable the heart to contract forcefully without ripping the fibers apart.”