Answer:
v₀ = 292.3 m / s
Explanation:
Let's analyze the situation, on the one hand we have the shock between the bullet and the block that we can work with at the moment and another part where the assembly (bullet + block) compresses a spring, which we can work with mechanical energy, as the data they give us are Let's start with this second part.
We write the mechanical energy when the shock has passed the bodies
Em₀ = K = ½ (m + M) v²
We write the mechanical energy when the spring is in maximum compression
=
= ½ k x²
Em₀ = 
½ (m + M) v² = ½ k x²
Let's calculate the system speed
v = √ [k x² / (m + M)]
v = √[154 0.83² / (0.012 +0.104)
]
v = 30.24 m / s
This is the speed of the bullet + Block system
Now let's use the moment to solve the shock
Before the crash
p₀ = m v₀
After the crash
= (m + M) v
The system is formed by the bullet and block assembly, so the forces during the crash are internal and the moment is preserved
p₀ = 
m v₀ = (m + M) v
v₀ = v (m + M) / m
let's calculate
v₀ = 30.24 (0.012 +0.104) /0.012
v₀ = 292.3 m / s
What following terms I don’t see any please make your question clear
Answer:
The magnification would be "103.55". A further explanation is given below.
Explanation:
The given values are:
Distance between lens and eyepiece,
L = 85 cm
Eyepiece is,
= 123 D
Now,
The refractive power of eye piece will be:
⇒ 


The length of the telescope will be:
⇒ 
⇒ 
On substituting the values, we get
⇒ 
⇒ 
Now,
The magnification of the telescope will be:
⇒ 
⇒ 
⇒ 
Answer:
a) He found the same value of q/m for different cathode materials.
b) y =
, c) v = 
Explanation:
In Thomson's experiments he was able to measure the deflection of the light beam under the effect of the magnetic field and with these results find the e / m relationship, which in all cases is the same, therefore the most important conclusion is that the value e E / m is constant for all materials.
b) In the part of the plates the electrons are accelerated by the electric field,
F = ma
- e E = m a
a = - (e/m) E₀
the distance traveled is
X axis
x = v₀ t
the separation of the plates is x = d
t = vo / d
Y axis
y = v_{oy} t + ½ to t²
y = ½ a t²
y =
c) In this case there is a magnetic field B₀ and the electrons have no deflection
F = - e E + e v x B
if there is no deviation F = 0
e E = e v B
v = 