The answer is 165.3 cm³.
P1 * V1 / T1 = P2 * V2 / T2
The initial sample:
P1 = 84.6 kPa
V1 = 215 cm³
T1 = 23.5°C = 23.5 + 273 K = 296.5 K
At STP:
P2 = 101.3 kPa
V2 = ?
T2 = 273 K
Therefore:
84.6 * 215 / 296.5 = 101.3 * V2 / 273
61.34 = 101.3 * V2 / 273
V2 = 61.34 * 273 / 101.3
V2 = 165.3 cm³
Explanation:
It is based upon the fact that " The light travels faster then sound." As the speed of light is faster then the speed of sound, light travels 300,000 km per second and sound travels 1192 km per hour. That is why we observe the lightening first and hear the the sound of thunder later.
You can do this experiment by yourself. Once you see the lightening start counting the seconds until you hear the sound of thunder.Then divide the seconds by 5, you will find out how many miles away the lightening strike was.
As per Bernuolli's Theorem total energy per unit mass is given as

now from above equation




now by above equation


Part B)
Now energy per unit weight



I think the answer would be 70
Force = (mass) x (acceleration)
If the full 15N is pointing parallel to the ground,
then
15 N = (58 kg) x (acceleration).
Divide each side
by 58 kg: Acceleration = 15 N / 58 kg
= (15 kg-m/s²) / (58 kg)
= (15/58) (kg-m/kg-s²)
= 0.26 m/s² .