Explanation:
Given that,
Size of object, h = 0.066 m
Object distance from the lens, u = 0.210 m (negative)
Focal length of the converging lens, f = 0.14 m
If v is the image distance from the lens, we can find it using lens formula as follows :
(a) Magnification,

(b) Magnification, 
h' is image height

Hence, this is the required solution.
Answer:
b. a lens does not focus all colors of light to the same place.
Explanation:
Chromatic aberration is a defect of a lens. In this defect, the lens is unable to focus the different wavelengths of the light on a single focal point. It is also known as chromatic distortion and color fringing. It is caused by the dispersion of light while passing through a lens. As a result, the image might become blurred and different colors are observed around its edges. It can be corrected by the use of a combination of converging and diverging lenses.
Hence, the correct option will be:
<u>b. a lens does not focus all colors of light to the same place.</u>
Answer: Take your pick
Explanation:
if they are all in parallel 1 /(1/100 + 1/300 + 1/50) = 30 Ω
if 50 is in parallel with 2 in series 1 / (1/(100 + 300) + 1/50) = 44.444...Ω
if 100 is in parallel with 2 in series 1 / (1/(50 + 300) + 1/100) = 77.777...Ω
if 300 is in parallel with 2 in series 1 / (1/(100 + 50) + 1/300) = 100 Ω
If 50 is in series with 2 in parallel 50 + 1/(1/100 + 1/300) = 125 Ω
If 100 is in series with 2 in parallel 100 + 1/(1/50 + 1/300) = 142.857...Ω
If 300 is in series with 2 in parallel 300 + 1/(1/50 + 1/100) = 333.333...Ω
If they are all in series 100 + 300 + 50 = 450 Ω
Answer:
75 N
Explanation:
In this problem, the position of the crate at time t is given by

The velocity of the crate vs time is given by the derivative of the position, so it is:

Similarly, the acceleration of the crate vs time is given by the derivative of the velocity, so it is:
[m/s^2]
According to Newton's second law of motion, the force acting on the crate is equal to the product between mass and acceleration, so:

where
m = 5.00 kg is the mass of the crate
At t = 4.10 s, the acceleration of the crate is

And therefore, the force on the crate is:

-- Gravity makes a falling object fall 9.8 m/s faster every second.
-- So, it reaches the speed of 30 m/s in (30/9.8) = 3.06 seconds after it's dropped.
-- The distance an object falls from rest is D = 1/2 (acceleration) (time)²
D = 1/2 (9.8 m/s²) (3.06 sec)²
D = (4.9 m/s²) (9.37 sec²)
<em>D = 45.8 meters</em>
Notice that we don't care how high the building is. The problem works just as long as the object can reach 30 m/s before it hits the ground. That turns out to be anything higher than 45.8 meters for the drop . . . maybe something like 13 floors or more.
Now I'll go a little farther for you ! Writing the last paragraph made me a little curious and uncomfortable. So I went and looked up the world's tallest buildings . . . and I found out that this problem could never happen !
The tallest building in the world now is the Burj Khalifa, in Dubai. It has 163 floors, and it's 828 meters high ! That's 2,717 feet. It's gonna be a long time before there's a building that's 1125 meters tall, like this problem says. That's close to 3700 feet . . . I've had flying lessons where I wasn't that far off the ground !