Correct temperature is 80°F
Answer:
T_f = 38.83°F
Explanation:
We are given;
Volume; V = 8 ft³
Initial Pressure; P_i = 100 lbf/in² = 100 × 12² lbf/ft²
Initial temperature; T_i = 80°F = 539.67 °R
Time for outlet flow; t_o = 90 s
Mass flow rate at outlet; m'_o = 0.03 lb/s
Final pressure; P_f = 30 lbf/in² = 30 × 12² lbf/ft²
Now, from ideal gas equation,
Pv = RT
Where v is initial specific volume
R is ideal gas constant = 53.33 ft.lbf/°R
Thus;
v = RT/P
v_i = 53.33 × 539.67/(100 × 12²)
v_i = 2 ft³/lb
Formula for initial mass is;
m_i = V/v_i
m_i = 8/2
m_i = 4 lb
Now change in mass is given as;
Δm = m'_o × t_o
Δm = 0.03 × 90
Δm = 2.7 lb
Now,
m_f = m_i - Δm
Thus; m_f = 4 - 2.7
m_f = 1.3 lb
Similarly in above;
v_f = V/m_f
v_f = 8/1.3
v_f = 6.154 ft³/lb
Again;
Pv = RT
Thus;
T_f = P_f•v_f/R
T_f = (30 × 12² × 6.154)/53.33
T_f = 498.5°R
Converting to °F gives;
T_f = 38.83°F
Answer:-q
Explanation:
Given
Capacitor is charged to a battery and capacitor acquired a charge of q i.e.
+q on Positive Plate and -q on negative Plate.
If the plate area is doubled and the plate separation is reduced to half its initial separation then capacitor becomes four times of initial value because capacitor is given by

where A=area of capacitor plate
d=Separation between plates
This change in capacitance changes the Potential such that new charge on the negative plate will remain same -q
Answer: The answer is B
Explanation: It is staying in a steady speed position
Answer:what is the question exactly
Explanation: