1000 miles = 1610km = 1.61x10^6m
2 weeks = 14 days = 14x24x1440
V=d/t = 1.61x10^6/14x24x1440
= 3.33m/s
Explanation:
Only few supernova are observed in our galaxy -
Type II supernovae ( i.e. the explosions of the massive stars ) occurred in the Milky Way, and they might be hidden by the intervening dust if they are located in the more distant parts of our Galaxy .
Type Ia supernovae , which need a white dwarf star in the binary star system , are brighter than the type II supernovae , but some of them could also happen in the older parts of Galaxy which are hidden due to the buildup of the dust and gas .
The solution for this problem is computed by through this formula, F = kQq / d²Plugging in the given values above, we can now compute for the answer.
F = 8.98755e9N·m²/C² * -(7e-6C)² / (0.03m)² = -489N, the negative sign denotes attraction.
Answer:
Electric potential = 0.00054 V
Explanation:
We are given;
Charge; q = 3 pC = 3 × 10^(-12) C
Radius; r = 2 cm = 0.02 m
Formula for the electric potential of this surface will be;
V = kqr
Where;
K is a constant = 9 × 10^(9) N⋅m²/C².
Thus;
V = 9 × 10^(9) × 3 × 10^(-12) × 0.02
V = 0.00054 V
Galaxies are sprawling systems of dust, gas, dark matter, and anywhere from a million to a trillion stars that are held together by gravity. Nearly all large galaxies are thought to also contain supermassive black holes at their centers.