Answer:
Final volumen first process 
Final Pressure second process 
Explanation:
Using the Ideal Gases Law yoy have for pressure:

where:
P is the pressure, in Pa
n is the nuber of moles of gas
R is the universal gas constant: 8,314 J/mol K
T is the temperature in Kelvin
V is the volumen in cubic meters
Given that the amount of material is constant in the process:

In an isobaric process the pressure is constant so:



Replacing : 

Replacing on the ideal gases formula the pressure at this piont is:

For Temperature the ideal gases formula is:

For the second process you have that
So:




Answer:
592.92 x 10³ Pa
Explanation:
Mole of ammonia required = 10 g / 17 =0 .588 moles
We shall have to find pressure of .588 moles of ammonia at 30 degree having volume of 2.5 x 10⁻³ m³. We can calculate it as follows .
From the relation
PV = nRT
P x 2.5 x 10⁻³ = .588 x 8.32 x ( 273 + 30 )
P = 592.92 x 10³ Pa
<span>2.5 m/s going upward.
In the situation described, Erica and Danny undergo a non-elastic collision which will conserve their combined momentum. Since Erica is stationary, her momentum is 0. And since Danny is moving upward at 4.7 m/s his momentum is 43 kg * 4.7 m/s = 202.1 kg*m/s. Assuming that both Erica and Danny will be moving as a joined system, their combined mass is 38 kg + 43 kg = 81 kg. Since the momentum will be the same, their velocity will be 202.1 kg*m/s / 81 kg = 2.495061728 m/s. Since we only have 2 significant figures in the provided data, rounding the result to 2 significant figures gives a velocity of 2.5 m/s going upward.</span>
If a bus travels 30 km in 1/2 hr, then in one hr, he can travel twice the distance.
30*2=60 km
Final answer: 60 km per hr
Answer:
p = mv
m = p/v = 125000/22 = 5682 kg
Explanation:
Direct application of the momentum equation
p = mv
where,
p: momentum
m: mass
v: object velocity
steps:
-------
1) check for units consistency ( SI or Imperial)
2) separate the variable you are looking for.
3) DONE! :DD