1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
babunello [35]
3 years ago
9

A block of ice (m = 9 kg) at a temperature of T1 = 0 degrees C is placed out in the sun until it melts, and the temperature of t

he resulting water rises to T2 = 17 degrees C. Recall that the specific heat of water is c = 4186 J/(kg⋅K), and its latent heat of fusion is Lf = 3.34 × 10^5 J/kg.(a) Input an expression for the amount of energy, E_m, needed to melt the ice into water. (b) Input an expression for the total amount of energy, E_tot, to melt the ice and then bring the water to T2.(c) What is this energy in Joules?
Physics
1 answer:
jonny [76]3 years ago
7 0

Answer:

a) An expression for the amount of energy, E_m, needed to melt the ice into water.

(E_m) = (m × Lf)

b) An expression for the total amount of energy, E_tot, to melt the ice and then bring the water to T2

(Total heat) = (m × Lf) + mc (T2 - T1)

c) 3,646,458 J = 3646.46 kJ

Explanation:

a) When a pure body changes its phase at meltimgbor boiling point, it does so at a constant temperature. When a pure body melts, the amount of heat responsible for this change is just given by a product od the mass of the body and the body's heat of fusion.

(E_m) = (m × Lf)

b) The Heat required to raise the temperature of a body from one temperature to another is given by the product of the mass of the body, its specific heat capacity and the temperature difference between the final point and the starting point.

(E_2) = mcΔT = mc (T2 - T1)

Total heat required to melt the ice at T1 = 0 and raise the temperature of the resulting water to T2 is then a sum of (E_m) + (E_2)

(Total heat) = (m × Lf) + mc (T2 - T1)

c) What is the energy in Joules?

(Total heat) = (m × Lf) + mc (T2 - T1)

m = mass of ice = resulting mass of water = 9 kg

Lf = latent heat of fusion = 334000 J/kg

c = Specific heat capacity of water = 4186 J/kg.K

T2 = final temperature of the water = 17°C

T1 = Initial temperature of the water = 0°C

Note that the units of temperature difference is the same for K and °C

(Total heat) = (m × Lf) + mc (T2 - T1)

Q = (9 × 334000) + [9 × 4186 × (17 - 0)]

Q = 3,006,000 + 640,458 = 3,646,458 J = 3646.46 kJ

Hope this Helps!!!

You might be interested in
A mass weighting 16 lbs stretches a spring 3 inches. The mass is in a medium that exerts a viscous resistance of 20 lbs when the
const2013 [10]

Answer:

The equation for the object's displacement is u(t)=0.583cos11.35t

Explanation:

Given:

m = 16 lb

δ = 3 in

The stiffness is:

k=\frac{m}{\delta } =\frac{16}{3} =5.33lb/in

The angular speed is:

w=\sqrt{\frac{k}{m} } =\sqrt{\frac{5.33*386.4}{16} } =11.35rad/s

The damping force is:

F_{D} =cu

Where

FD = 20 lb

u = 4 ft/s = 48 in/s

Replacing:

c=\frac{F_{D} }{u} =\frac{20}{48} =0.42lbs/in

The critical damping is equal:

c_{c} =\frac{2k}{w} =\frac{2*5.33}{11.35} =0.94lbs/in

Like cc>c the system is undamped

The equilibrium expression is:

u(t)=u(o)coswt+u'(o)sinwt\\u(o)=7=0.583\\u'(o)=0\\u(t)=0.583coswt\\u(t)=0.583cos11.35t

3 0
3 years ago
The attraction of liquid particles for a solid surface is due to ____.
White raven [17]
This attraction occurs from adhesion, also known as adsorption <span />
6 0
3 years ago
Read 2 more answers
Model rocket engines are sized by thrust, thrust duration, and total impulse, among other characteristics. A size C5 model rocke
umka2103 [35]

Answer:

v_{f} = 115.95 m / s

Explanation:

This is an exercise of a variable mass system, let's form a system formed by the masses of the rocket, the mass of the engines and the masses of the injected gases, in this case the system has a constant mass and can be solved using the conservation the amount of movement. Which can be described by the expressions

        Thrust = v_{e}  \frac{dM}{dt}

        v_{f}-v₀ = v_{e} ln ( \frac{M_{o} }{M_{f}} )

where v_{e} is the velocity of the gases relative to the rocket

let's apply these expressions to our case

the initial mass is the mass of the engines plus the mass of the fuel plus the kill of the rocket, let's work the system in SI units

       M₀ = 25.5 +12.7 + 54.5 = 92.7 g = 0.0927 kg

     

The final mass is the mass of the engines + the mass of the rocket

      M_{f} = 25.5 +54.5 = 80 g = 0.080 kg

thrust and duration of ignition are given

       thrust = 5.26 N

       t = 1.90 s

Let's start by calculating the velocity of the gases relative to the rocket, where we assume that the rate of consumption is linear

          thrust = v_{e} \frac{M_{f} - M_{o}  }{t_{f} - t_{o}  }

          v_{e} = thrust  \frac{\Delta t}{\Delta M}

          v_{e} = 5.26 \frac{1.90}{0.080 -0.0927}

          v_{e} = - 786.93 m / s

the negative sign indicates that the direction of the gases is opposite to the direction of the rocket

now we look for the final speed of the rocket, which as part of rest its initial speed is zero

            v_{f}-0 = v_{e} ln ( \frac{M_{o} }{M_{f} } )

we calculate

            v_{f} = 786.93 ln (0.0927 / 0.080)

            v_{f} = 115.95 m / s

5 0
3 years ago
Find the speed vfinal of the joined cars after the collision. mastering physics
Tanya [424]
<span>Px = 0 Py = 2mV second, Px = mVcosφ Py = –mVsinφ add the components Rx = mVcosφ Ry = 2mV – mVsinφ Magnitude of R = âš(Rx² + Ry²) = âš((mVcosφ)² + (2mV – mVsinφ)²) and speed is R/3m = (1/3m)âš((mVcosφ)² + (2mV – mVsinφ)²) simplifying Vf = (1/3m)âš((mVcosφ)² + (2mV – mVsinφ)²) Vf = (1/3)âš((Vcosφ)² + (2V – Vsinφ)²) Vf = (V/3)âš((cosφ)² + (2 – sinφ)²) Vf = (V/3)âš((cos²φ) + (4 – 2sinφ + sin²φ)) Vf = (V/3)âš(cos²φ) + (4 – 2sinφ + sin²φ)) using the identity sin²(Ď)+cos²(Ď) = 1 Vf = (V/3)âš1 + 4 – 2sinφ) Vf = (V/3)âš(5 – 2sinφ)</span>
6 0
3 years ago
Singly charged uranium-238 ions are accelerated through a potential difference of 2.20 kV and enter a uniform magnetic field of
Aleonysh [2.5K]

Answer:

r = 0.0548 m

Explanation:

Given that,

Singly charged uranium-238 ions are accelerated through a potential difference of 2.20 kV and enter a uniform magnetic field of 1.90 T directed perpendicular to their velocities.

We need to find the radius of their circular path. The formula for the radius of path is given by :

r=\dfrac{1}{B}\sqrt{\dfrac{2mV}{q}}

m is mass of Singly charged uranium-238 ion, m=3.95\times 10^{-25}\ kg

q is charge

So,

r=\dfrac{1}{1.9}\times \sqrt{\dfrac{2\times 3.95\times 10^{-25}\times 2.2\times 10^3}{1.6\times 10^{-19}}}\\\\r=0.0548\ m

So, the radius of their circular path is equal to 0.0548 m.

4 0
3 years ago
Other questions:
  • As a longitudinal wave moves through a medium,
    6·1 answer
  • If a lens has a power of -14.50, what is the focal length in mm?
    8·1 answer
  • When a light bulb is connected to a 4.5 V battery, a current of 0.12 A passes through the bulb filament. What is the resistance
    11·1 answer
  • A truck moves 70 m east, then moves 120 m west, andfinally
    7·1 answer
  • A 20 kg mass is dropped from a tall rooftop and accelerates at 9.8 m/s2. What is the weight of the dropped object?
    13·2 answers
  • The force of gravity on a person or object on the surface of a planet is called
    15·1 answer
  • An object accelerates from rest to a velocity of 22 m/s over 35 m what was it’s acceleration
    12·1 answer
  • A supply plane needs to drop a package of food to scientists working on a glacier in Greenland. The plane flies 90.0 m above the
    12·1 answer
  • what is the distance a train can travel if its speed is 20mph over a time of 5.6 hours (show all 3 steps)
    7·1 answer
  • good morning to you all! can someone please answer this, ill give you brainliest and your earning 50 points.
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!