We can rearrange the mirror equation before plugging our values in.
1/p = 1/f - 1/q.
1/p = 1/10cm - 1/40cm
1/p = 4/40cm - 1/40cm = 3/40cm
40cm=3p <-- cross multiplication
13.33cm = p
Now that we have the value of p, we can plug it into the magnification equation.
M=-16/13.33=1.2
1.2=h'/8cm
9.6=h'
So the height of the image produced by the mirror is 9.6cm.
Answer:
a= - 6.667 m/s²
Explanation:
Given that
The initial speed of the box ,u= 20 m/s
The final speed of the box ,v= 0 m/s
The distance cover by box ,s= 30 m
Lets take the acceleration of the box = a
We know that
v²= u ² + 2 a s
Now by putting the values in the above equation we get
0²=20² + 2 a x 30

a= - 6.667 m/s²
Negative sign indicates that velocity and acceleration are in opposite direction.
Therefore the acceleration of the box will be - 6.667 m/s² .
The buoyant force on any object acts in the direction opposite to the force of gravity. <em>(A)</em>
Answer:
I belive it would be "C"
Explanation:
If it was any of the other answers "B" it would instantly stop. "A" it would roll forever.
i think its very hot summers