Answer:
R = 0.0503 m
Explanation:
This is a projectile launching exercise, to find the range we can use the equation
R = v₀² sin 2θ / g
How we know the maximum height
² =
² - 2 g y
= 0
= √ 2 g y
= √ 2 9.8 / 15
= 1.14 m / s
Let's use trigonometry to find the speed
sin θ =
/ vo
vo =
/ sin θ
vo = 1.14 / sin 60
vo = 1.32 m / s
We calculate the range with the first equation
R = 1.32² sin(2 60) / 30
R = 0.0503 m
Answer:
The nuclei are moving fast with respect to one another
Explanation:
Protons are found in the nucleus together with the neutrons while the electrons normally revolve round it.
However the protons appears fused in a way when electromagnetic force is applied by the nuclei moving at a very fast speed. This fast speed helps to keep the supposed neutrons fused together.
The appropriate term is latent heat. This energy is released as the water changes state from a gas to liquid....a liquid to solid etc. the latent heat is either absorbed or given off by the water as it changes its physical state. Latent heat of fusion is associated with freezing a liquid or melting a solid.
Answer:
a) -4 N
b) +4 N
Explanation:
Draw a free body diagram for each block.
For the large block, there are 2 forces: 12 N pushing to the right, and F pushing to the left.
For the small block, there is 1 force, F pushing to the right.
There are also weight and normal forces in the vertical direction, but we can ignore those.
Sum of forces on the large block in the x direction:
∑F = ma
12 − F = 4a
Sum of forces on the small block in the x direction:
∑F = ma
F = 2a
2F = 4a
Substitute:
12 − F = 2F
12 = 3F
F = 4
The small block pushes on the large block 4 N to the left (-4 N).
The large block pushes on the small block 4 N to the right (+4 N).