Answer:
Explanation:
Intramolecular forces is a strong bond that helps to bond atoms together while intermolecular forces are weak bond that are present between molecules.
Answer:
The answer to the question is as follows
The acceleration due to gravity for low for orbit is 9.231 m/s²
Explanation:
The gravitational force is given as

Where
= Gravitational force
G = Gravitational constant = 6.67×10⁻¹¹
m₁ = mEarth = mass of Earth = 6×10²⁴ kg
m₂ = The other mass which is acted upon by
and = 1 kg
rEarth = The distance between the two masses = 6.40 x 10⁶ m
therefore at a height of 400 km above the erth we have
r = 400 + rEarth = 400 + 6.40 x 10⁶ m = 6.80 x 10⁶ m
and
=
= 9.231 N
Therefore the acceleration due to gravity =
/mass
9.231/1 or 9.231 m/s²
Therefore the acceleration due to gravity at 400 kn above the Earth's surface is 9.231 m/s²
To get a uniform field in the central region between the coils, current flows in the same direction in each.
Answer:
atm
Explanation:
The pressure at the bottom of any liquid column is equal to product of density of the liquid , gravitational acceleration constant (g) and height of the water column
Thus, 
Substituting the given values, we get -
kg/m3
m/s^2
meters
atm
Answer:
(a) 
(b) 
(c) 
(d) 
Solution:
As per the question:
Angular velocity, 
Time taken by the wheel to stop, t = 2.4 h = 
Distance from the axis, R = 38 cm = 0.38 m
Now,
(a) To calculate the constant angular velocity, suing Kinematic eqn for rotational motion:

= final angular velocity
= initial angular velocity
= angular acceleration
Now,


Now,
(b) The no. of revolutions is given by:



(c) Tangential component does not depend on instantaneous angular velocity but depends on radius and angular acceleration:

(d) The radial acceleration is given by:

Linear acceleration is given by:

