Answer:
Therefore the direction is in the <u>positive direction of the z axes</u>.
Explanation:
Let's recall that the magnetic force is given by:

The unit vector of V is
and the unit vector of B is 
So, the direction of the force will be defined as the cross product of i and j, and using the right hand rule:
Therefore the direction of the magnetic force is in the <u>positive direction of the z axes</u>.
I hope it helps you!
Answer:
Ionic bonds form when a nonmetal and a metal exchange electrons, while covalent bonds form when electrons are shared between two nonmetals. An ionic bond is a type of chemical bond formed through an electrostatic attraction between two oppositely charged ions.
Explanation:
Answer:
The average drag force is 1.206 (-i) N
Explanation:
You have to apply the equations of<em> Impulse</em>:
I=FmedΔt
Where I and Fmed (the average force) are vectors.
The Impulse can also be expressed as the change in the <em>quantity of motion</em> (vector P)
I=P2-P1
P=mV (m is the mass and v is the velocity)
You can calculate the quantity of motion at the beggining and at the end of the given time:
Replace the mass in kg, dividing the mass by 1000 to convert it from g to kg.
P1=(0.179kg)(30.252m/s) i= 5.414 i kg.m/s
P2=0.179kg)(28.452m/s) i = 5.092 i kg. m/s
Where i is the unit vector in the x-direction.
Therefore:
I= 5.092 i - 5.414 i = -0.322 i
The average drag force is:
Fmed= I/Δt = -0.322 i/ 0.267s = -1.206 i N
Answer:
The applied torque is 3.84 N-m.
Explanation:
Given that,
Moment of inertia of the wheel is 
Initial speed of the wheel is 0 (at rest)
Final angular speed is 25 rad/s
Time, t = 13 s
The relation between moment of inertia and torque is given by :

So, the applied torque is 3.84 N-m.