Answer:
a. 60.5 kg
Explanation:
Given data,
The maximum water a boat can displace is, 60.5 ml
According to the principle of buoyancy, the weight of the floating body is equal to the weight of the liquid displaced.
Under standard temperature and pressure, a unit mass of water equals one liter.
If a boat can displace a maximum of 60.5 ml of water, then it can hold a mass of a maximum of 60.5 kg of mass.
Answer: 3 m.
Explanation:
Neglecting the mass of the seesaw, in order the seesaw to be balanced, the sum of the torques created by gravity acting on both children must be 0.
As we are asked to locate Jack at some distance from the fulcrum, we can take torques regarding the fulcrum, which is located at just in the middle of the length of the seesaw.
If we choose the counterclockwise direction as positive, we can write the torque equation as follows (assuming that Jill sits at the left end of the seesaw):
mJill* 5m -mJack* d = 0
60 kg*5 m -100 kg* d =0
Solving for d:
d = 3 m.
Answer:

Explanation:
Two identical bodies are sliding toward each other on a frictionless surface.
Initial speed of body 1, m₁ = 1 m/s
Initial speed of body 2, m₂ = 2 m/s
They collide and stick.
We need to find the speed of the combined mass. Let V is the speed of the combined mass.
Using the conservation of momentum.

We have, m₁ = m₂ = m

So, the speed of the combined mass is
.