Answer:
y = 1/4 x - 7/2
Step-by-step explanation:
x - 4y = 14
-4y = -x + 14
y = -x/(-4) - 14/4
y = 1/4 x - 7/2
300.84m^2
First, set up the equation
A=27.6•10.9
Next, multiply(use a calculator)
And you get the answer.
^2 means squared.
A.Fractions and decimals are not integers<span>. All whole </span>numbers<span> are</span>integers<span> (and all natural </span>numbers<span> are </span>integers<span>), but not all </span>integers<span>are whole </span>numbers<span> or natural </span>numbers<span>. For example, -5 is an </span>integer<span>but not a whole </span>number<span> or a natural </span>number<span>.
B.</span><span>A </span>number<span> is </span>rational<span> if it can be represented as p q with p , q ∈ Z and q ≠ </span>0<span> . Any </span>number<span> which doesn't fulfill the above conditions is irrational. It can be represented as a ratio of two integers as well as ratio of itself and an irrational </span>number<span> such that </span>zero<span> is not dividend in any case
</span>C.<span>In mathematics, an </span>irrational number<span> is any </span>real number<span> that cannot be expressed as a ratio of integers. </span>Irrational numbers<span> cannot be represented as terminating or repeating decimals.
</span>D.<span>The correct answer is </span>rational<span> and </span>real numbers<span>, because all </span>rational numbers<span> are also </span>real<span>. Correct. The </span>number<span> is between integers, so it can't be an integer or a whole </span>number<span>. It's written as a ratio of two integers, so it's a </span>rational number<span> and not irrational.
</span> Witch one do u think it is??
15x=45
45/15 =3
X=3
45 miles in 3 hours
How long did it take for 40 miles?
15x=40
40/15 = 2.6666667
15 x 2= 30
15 x 2.5 = 37.5
15 x 2.6 = 39
15 x 2.7 = 40.5
1 hour equals 60 mins
Answer:
It took Cole about 2 hours and 6 mins to ride 40 miles.
Answer:
x^2+8x+<u>1</u><u>6</u><u>=</u><u>(</u><u>x-4</u><u>)</u><u>^</u><u>2</u>
<em><u>EXPLANATION</u></em><em><u>:</u></em>
<u>(</u><u>a</u><u>+</u><u>b</u><u>)</u><u>^</u><u>2</u><u>=</u><u>a2</u><u>+</u><u>2</u><u>.</u><u>a</u><u>.</u><u>b</u><u>+</u><u>b2</u>
<u>we</u><u> </u><u>have</u><u> </u><u>to</u><u> </u><u>break</u><u> </u><u>the</u><u> </u><u>middle</u><u> </u><u>term</u><u> </u><u>i</u><u>n</u><u> </u><u>2</u><u>a</u><u>b</u><u> </u><u>here</u><u> </u><u>a</u><u> </u><u>is</u><u> </u><u>x</u><u> </u><u>then</u><u> </u><u>2</u><u>x</u><u>b</u><u>=</u><u>8</u><u>x</u><u>,</u><u> </u><u>=</u><u>></u><u> </u><u>b</u><u>=</u><u>4</u><u>,</u><u> </u><u>but</u><u> </u><u>value</u><u> </u><u>of</u><u> </u><u>a</u><u> </u><u>and</u><u> </u><u>b</u><u> </u><u>to</u><u> </u><u>get</u><u> </u><u>the</u><u> </u><u>req</u><u>uired</u><u> </u><u>equation</u><u>!</u>