Answer:
Ka3 for the triprotic acid is 7.69*10^-11
Explanation:
Step 1: Data given
Ka1 = 0.0053
Ka2 = 1.5 * 10^-7
pH at the second equivalence point = 8.469
Step 2: Calculate Ka3
pKa = -log (Ka2) = 6.824
The pH at the second equivalence point (8.469) will be the average of pKa2 and pKa3. So,
8.469 = (6.824 + pKa3) / 2
pKa3 = 10.114
Ka3 = 10^-10.114 = 7.69*10^-11
Ka3 for the triprotic acid is 7.69*10^-11
I think there is a typo because I've never seen HSO4 2- before in my life. It should be HSO4-. For that, H is 1+ and each Oxygen is 2-0 totaling 8-. So the oxidation state of sulfur +1 - 8 = 7
So the oxidation state of sulfur is +6
Explanation:
A covalent bond is defined as the occurrence of a bond due to the sharing of electrons between the combining atoms.
Atomic number of hydrogen atom is 1 and its electronic configuration is
. So, in order to complete its octet it needs to gain or mutually shares one electron.
A covalent bond is generally formed between non-metal atoms.
Thus, we can conclude that hydrogen has only one electron that will be involved in the formation of a covalent bond.
Use a proportion ...
<span>100.0g - 38.67g - 13.86g = 47.47g Oxygen </span>
<span>285.0 mg = 0.285g </span>
<span>47.47/100 = x/0.285g </span>
<span>x = ( 47.47/100) X 0.285g </span>
Answer:
Explanation:
Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.
slow
fast
To determine the net chemical equation, we will simply add the above two equations, we get:
![Rate=k[O_3][NO_2]^2](https://tex.z-dn.net/?f=Rate%3Dk%5BO_3%5D%5BNO_2%5D%5E2)
Order with respect to
is 1 and Order with respect to
is 2.
Thus the rate law will be: