Half-life time of a reaction is time at which reactant concentration becomes half of its initial value.
Half-life of the first order reaction is 20 min. Rate constant can be calculated as follows:

The rate expression for first order reaction is as follows:

initial number of molecules of reactant are
, time is 100 min thus, putting the values to calculate number of reactant at time 100 min,
![0.03466 min^{-1}=\frac{2.303}{100 min}log\frac{[10^{20}]}{A_{t}}](https://tex.z-dn.net/?f=0.03466%20min%5E%7B-1%7D%3D%5Cfrac%7B2.303%7D%7B100%20min%7Dlog%5Cfrac%7B%5B10%5E%7B20%7D%5D%7D%7BA_%7Bt%7D%7D)
On rearranging,

Or,

Therefore, number of molecules unreacted will be 
Hello
It represents the certain radio station that you are currently using and it is the smae number of radio waves
hope this helps
plz mark me as brainliest
Answer : The hydroxide ion concentration of a solution is, 
Explanation :
As we know that
dissociates in water to give hydrogen ion
and carbonate ion
.
As, 1 mole of
dissociates to give 1 mole of hydrogen ion 
Or, 1 M of
dissociates to give 1 M of hydrogen ion 
So, 0.200 M of
dissociates to give 0.200 M of hydrogen ion 
Now we have to calculate the hydroxide ion concentration.
As we know that:
![[H^+][OH^-]=1\times 10^{-14}](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%5BOH%5E-%5D%3D1%5Ctimes%2010%5E%7B-14%7D)
![0.200\times [OH^-]=1\times 10^{-14}](https://tex.z-dn.net/?f=0.200%5Ctimes%20%5BOH%5E-%5D%3D1%5Ctimes%2010%5E%7B-14%7D)
![[OH^-]=5\times 10^{-14}](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D5%5Ctimes%2010%5E%7B-14%7D)
Therefore, the hydroxide ion concentration of a solution is, 
<h2>Answer:</h2>
What does Atomic number represents ___________.
What does the Mass number represent ___________
Periods are _____________ rows.
Groups are _____________ columns.
Total elements in periodic table are _____________.
Answer: The results agree with the law of conservation of mass
Explanation:
The law of conservation of mass states that mass is neither created nor destroyed in a chemical reaction. On the reactant side, the total mass of reactants is 14.3g and the total product masses is also 14.3g. That implies that no mass was !most in the reaction. The sum of masses on the left hand side corresponds with sum of masses on the right hand side of the reaction equation.