The very common mineral shown in the figure that is referred in this problem that is commonly a pink- to cream-colored mineral with wavy, light-colored lines and does not effervesce would be feldspar. It make up about 41 percent weight of the Earth's crust. It is a group of rocks that contains tectosilicate compounds.
Answer: 1.) renewable resources can be replenished as fast as they are used. Nonrenewable resources are unable to be replaced at the same rate at which they are used. 2.) nonrenewable energy sources will eventually run out, leaving people to figure out how to continue running their cars, homes, and busines. They must find alternative sources of energy. Since renewable energy resources that will never run out, it is a great option.
Explanation:
<u>Answer:</u> No crystals of potassium sulfate will be seen at 0°C for the given amount.
<u>Explanation:</u>
We are given:
Mass of potassium nitrate = 47.6 g
Mass of potassium sulfate = 8.4 g
Mass of water = 130. g
Solubility of potassium sulfate in water at 0°C = 7.4 g/100 g
This means that 7.4 grams of potassium sulfate is soluble in 100 grams of water
Applying unitary method:
In 100 grams of water, the amount of potassium sulfate dissolved is 7.4 grams
So, in 130 grams of water, the amount of potassium sulfate dissolved will be 
As, the soluble amount is greater than the given amount of potassium sulfate
This means that, all of potassium sulfate will be dissolved.
Hence, no crystals of potassium sulfate will be seen at 0°C for the given amount.
Answer:
<em><u>spontaneous composition</u></em> is the ingnition
of the substance due to the repid oxidation of its on material.
There is no requirement of heat of external sources.
<em><u>Rapid composition</u></em> on the other hand release large amount of heat and light energy.
Explosion and the firecracker is the best example of Rapid composition.
Answer:
Explanation:
A bronsted lowry acid just means that it donates a proton.
An arrhenius acid dissolves in water to donate a proton
the only difference is that an arrhenius acid must dissolve in water but it still donates a proton so it is considered a bronsted lowry acid