Answer: The density of chloroform is 1.47 g/mL
Explanation : Given,
Volume = 40.5 mL
Mass of cylinder = 85.16 g
Mass of cylinder and liquid = 145.10 g
First we have to calculate the mass of liquid (chloroform).
Mass of liquid = Mass of cylinder and liquid - Mass of cylinder
Mass of liquid = 145.10 g - 85.6 g
Mass of liquid = 59.5 g
Now we have to calculate the density of liquid (chloroform).
Formula used:

Now putting g all the given values in this formula, we get:


Therefore, the density of chloroform is 1.47 g/mL
Answer:
Mostly Para
Explanation:
First, let's assume that the molecule is the toluene (A benzene with a methyl group as radical).
Now the nitration reaction is a reaction in which the nitric acid in presence of sulfuric acid, react with the benzene molecule, to introduce the nitro group into the molecule. The nitro group is a relative strong deactiviting group and is metha director, so, further reactions that occur will be in the metha position.
Now, in this case, the methyl group is a weak activating group in the molecule of benzene, and is always ortho and para director for the simple fact that this molecule (The methyl group) is a donor of electrons instead of atracting group of electrons. Therefore for these two reasons, when the nitration occurs,it will go to the ortho or para position.
Now which position will prefer to go? it's true it can go either ortho or para, however, let's use the steric hindrance principle. Although the methyl group it's not a very voluminous and big molecule, it still exerts a little steric hindrance, and the nitro group would rather go to a position where no molecule is present so it can attach easily. It's like you have two doors that lead to the same place, but in one door you have a kid in the middle and the other door is free to go, you'll rather pass by the door which is free instead of the door with the kid in the middle even though you can pass for that door too. Same thing happens here. Therefore the correct option will be mostly para.
Sugar. It is solid and its atoms have less kinetic energy to overcome the bonding force. So, the bonding force is stronger than water, which is liquid and has more kinetic energy to overcome the bonding force of atoms. So, water has less strong force of attraction. Hence, sugar has stronger forces of attraction.
Answer
I think it might be B
Explanation
Don’t worry about it, let me do your homework!
Born February 27, 1869, Alice Hamilton was an American physician, research scientist, and author who is best known as a leading expert in the field of occupational health and a pioneer in the field of industrial toxicology. She was also the first woman appointed to the faculty of Harvard University.