1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alinara [238K]
3 years ago
9

1. A wall is made up of four elements, as follows:

Physics
1 answer:
balu736 [363]3 years ago
8 0

Part A)

Since all four resistors are made up of different elements and connected in series

SO in series the net resistance is given by

R = R_1 + R_2 + R_3 + R_4

R = 0.81 + 0.62 + 10.9 + 0.45

R = 12.78

Part B)

If insulation is removed then resistance due to three materials

R = R_1 + R_2 + R_3

R = 0.81 + 0.62 + 0.45

R = 1.88

Part c)

Heat will always flow from High temperature to low temperature

So here heat flow is from 90 degree F to 70 degree F

so it will flow from outside to inside

You might be interested in
PLEASE HELP : What happens in obese mice? (Physiology)
irina1246 [14]

Answer and

Explanation:

The gut microbiota has recently emerged as an important, and previously unappreciated, player in host physiology (1). In particular, the gut microbiota contributes to a variety of physiological and pathophysiological processes in the host including immune disorders (2–4), atherosclerosis (5), irritable bowel syndrome (6, 7), blood pressure regulation (8), and chronic kidney disease (9, 10). Bacteria residing in the human gut are an important component of human physiology: the total wet weight of gut microbes in the human has been estimated to be 175 g–1.5 kg (11, 12), and the cells of the microbiota outnumber human cells by 10:1 (1). These bacteria interact with the immune system of the host (13), and secrete a variety of metabolites, which enter host circulation and can affect a variety of physiological parameters (8, 14), reviewed in Ref. (15). In fact, metabolites produced by the gut microbiota have been found to play key roles in renal disease (16), blood pressure regulation (8), and immune disorders (2–4). Therefore, just as we consider the genetic background of an animal or an individual to be an important contributing factor to their physiology, so too must we consider the genetic background of the microbiota associated with that animal.

Gut microbiota vary greatly amongst laboratory animals, and these differences result in notable differences in experimental results. Mice of the same strain from different vendors have different microbiota profiles (17), and similarly, the same mice housed at different institutions have different microbiota profiles (18, 19). Conversely, inoculating two different inbred mouse strains with the same gut bacteria leads to differences in host gene expression between the two mouse strains (20). Clearly, there is a complex interplay between the genetics of the microbiota and that of the host organism, which has only recently begun to be appreciated.

Go to:

Gut Microbiota as an Experimental Parameter

Examples in the literature have highlighted the important and unexpected ways in which gut microbiota can affect a variety of experimental parameters. In a series of studies, Vijay-Kumar et al. (13, 21) reported that although TLR5 null animals initially had a colitis phenotype, when these mice were “rederived” and their gut microbiota altered, the colitis phenotype was greatly attenuated, and instead the null animals exhibited metabolic syndrome. In addition, Lathrop et al. put forward a model by which T-cells are educated not only by self/non-self mechanisms, but also by microbiota-derived “non-self” antigens (22). Accordingly, they found that the presence or absence of microbiota determined whether T cells would induce colitis in mice. Finally, Yang et al. reported that when the same knockout mice were housed at two different institutions, they had markedly different microbiota profiles – and the mice at one institution (MIT) were quite susceptible to colitis, whereas mice at the other institution (MHH) failed to develop any significant pathology under the same conditions (19). Unequivocally, altering gut microbiota – even by housing animals at different institutions – can have dramatic effects on the phenotype observed.

Go to:

Gut Microbiota and Obesity and Diabetes

It is important to note that not only can microbiota affect host physiology, but the gut microbiota are not necessarily stable over time. Rather, gut microbiota can change or shift as a result of experimental manipulation (in animals) or changes in lifestyle or nutrition (in humans). It is now appreciated that there are “shifts” in microbiota that occur in obesity in mice, rats, and humans (23–26). In one study, Turnbaugh et al. (25) examined human female twin pairs concordant for leanness or obesity, and found that obesity was associated with phylum-level changes in microbiota.

7 0
3 years ago
What damage a tornado can cause
Ksivusya [100]
Alrighty, so, houses can be destroyed, people can be killed, animals can be killed, habitats can be destroyed, and trees can be uprooted. Tornadoes can create massive damage.

Hope this helps! (:
5 0
3 years ago
A steel wire of length 31.0 m and a copper wire of length 17.0 m, both with 1.00-mm diameters, are connected end to end and stre
Brut [27]

Answer:

The time taken is  t =  0.356 \ s

Explanation:

From the question we are told that

  The length of steel the wire is  l_1  = 31.0 \ m

   The  length of the  copper wire is  l_2  = 17.0 \ m

    The  diameter of the wire is  d =  1.00 \ m  =  1.0 *10^{-3} \ m

     The  tension is  T  =  122 \ N

     

The time taken by the transverse wave to travel the length of the two wire is mathematically represented as

              t  =  t_s  +  t_c

Where  t_s is the time taken to transverse the steel wire which is mathematically represented as

         t_s  = l_1 *  [ \sqrt{ \frac{\rho * \pi *  d^2 }{ 4 *  T} } ]

here  \rho_s is the density of steel with a value  \rho_s  =  8920 \ kg/m^3

   So

      t_s  = 31 *  [ \sqrt{ \frac{8920 * 3.142*  (1*10^{-3})^2 }{ 4 *  122} } ]

      t_s  = 0.235 \ s

 And

        t_c is the time taken to transverse the copper wire which is mathematically represented as

      t_c  = l_2 *  [ \sqrt{ \frac{\rho_c * \pi *  d^2 }{ 4 *  T} } ]

here  \rho_c is the density of steel with a value  \rho_s  =  7860 \ kg/m^3

 So

      t_c  = 17 *  [ \sqrt{ \frac{7860 * 3.142*  (1*10^{-3})^2 }{ 4 *  122} } ]

      t_c  =0.121

So  

   t  = t_c  + t_s

    t =  0.121 + 0.235

    t =  0.356 \ s

4 0
3 years ago
As you found out in the previous part, bernoulli's equation tells us that a fluid element that flows through a flow tube with de
8090 [49]
This causes the fluid to increase its speed. Bernoulli's principle tells us that an increase in the speed of a fluid happens at the same time with a reduction in pressure or a reduction in the fluid's potential energy. This necessitates that the amount of kinetic energy, potential energy and internal energy stays persistent.
8 0
3 years ago
Calculate the speed of a car that traveled 200 kilometers in 3 hours.
nignag [31]

Answer:

The units (km/h) tell you how to do this! 200km/3h = 66.66666666…. BUT technically you only have ONE significant digit: 3 so 66.666… rounded to ONE digit is 70km/h but that is probably not important in this intro class so V = 66.67 or 67 km/h

8 0
3 years ago
Read 2 more answers
Other questions:
  • The dark, smooth surface areas of the Moon are known as
    11·1 answer
  • A space shuttle is in orbit about the earth at an altitude where the acceleration due to gravity is 8.70 m/s2. What is the shutt
    11·1 answer
  • At a waterpark, sleds with riders are sent along a slippery, horizontal surface by the release of a large, compressed spring. Th
    15·2 answers
  • It took an American football lineman 14 seconds to complete 10 repetitions of a 102 kg bench press. If the bar had to travel 1.4
    12·1 answer
  • The pressure at the bottom of a glass filled with water (r 5 1 000 kg/m3 ) is P. The water is poured out and the glass is filled
    12·1 answer
  • A footballer kicks a ball from rest. The foot is in contact with the ball for 0.30s and the final velocity of the ball is 15ms-1
    7·1 answer
  • What can Lisa do to increase the strength of the electromagnet? She can use a nail with weaker magnetic properties. She can chan
    6·2 answers
  • Recommend An architect wants to design a conference room that
    11·1 answer
  • Red+Blue=???????<br>Answer it.​
    13·2 answers
  • How to magnetic stripes provide evidence of seafloor spreading
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!