1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
exis [7]
3 years ago
12

Two strings with linear densities of 5 g/m are stretched over pulleys, adjusted to have vibrating lengths of 0.50 m, and attache

d to hanging blocks. The block attached to string 1 has a mass of 20 kg and the block attached to string 2 has a mass of M. Listeners hear a beat frequency of 2 Hz when string 1 is excited at its fundamental frequency and string 2 is excited at its third harmonic. What is one possible value for mass M
Physics
1 answer:
HACTEHA [7]3 years ago
8 0

Answer:

2.18 kg

Explanation:

The frequency of a wave in a stretched string f = n/2L√(T/μ) where n = harmonic number, L = length of string, T = tension = mg where m = mass of object on string and g = acceleration due to gravity = 9.8 m/s² and μ = linear density of string.

For string 1, its fundamental frequency f  is when n = 1. So,

f = 1/2L√(T/μ) =  1/2L√(mg/μ)

Now for string 1, L = 0.50 m, m = 20 kg and μ = 5 g/m = 0.005 kg/m

substituting the values of the variables into f, we have

f = 1/2L√(mg/μ)

f = 1/2 × 0.50 m√(20 kg × 9.8 m/s²/0.005 kg/m)

f = 1/1 m√(196 kgm/s²/0.005 kg/m)

f = 1/1 m√(39200 m²/s²)

f = 1/1 m × 197.99 m/s

f = 197.99 /s

f = 197.99 Hz

f ≅ 198 Hz

For string 2, at its third harmonic frequency f'  is when n = 3. So,

f' = 3/2L√(T/μ) =  3/2L√(mg/μ)

Now for string 2, L = 0.50 m, m = M kg and μ = 5 g/m = 0.005 kg/m

substituting the values of the variables into f, we have

f' = 3/2L√(Mg/μ)

f' = 3/2 × 0.50 m√(M × 9.8 m/s²/0.005 kg/m)

f' = 3/1 m√(M1960 m²/s²kg)

f' = 3/1 m√M√(1960 m²/s²kg)

f' = 3/1 m √M × 44.27 m/s√kg

f' = 132.81√M/s√kg

f' = 132.81√M Hz/√kg

Since the frequency of the beat heard is 2 Hz,

f - f' = 2 Hz

So, 198 Hz - 132.81√M Hz/√kg = 2 Hz

132.81√M Hz/√kg = 198 Hz - 2 Hz

132.81√M Hz/√kg = 196 Hz

√M Hz/√kg = 196 Hz/138.81 Hz

√M/√kg = 1.476

squaring both sides,

[√M/√kg] = (1.476)²

M/kg = 2.178

M = 2.178 kg

M ≅ 2.18 kg

You might be interested in
Pilots can be tested for the stresses of flying high-speed jets in a whirling "human centrifuge," which takes 1.2min to turn thr
bearhunter [10]
Sure.
Can I use your answer to part-'a' ?

If the angular acceleration is actually 32 rev/min², than
after 1.2 min, it has reached the speed of

                 (32 rev/min²) x (1.2 min)  =  38.4 rev/min .

Check:

If the initial speed is zero and the final speed is 38.4 rpm,
then the average speed during the acceleration period is

                  
(1/2) (0 + 38.4)  =  19.2 rpm  average

At an average speed of  19.2 rpm for 1.2 min,
it covers

                   (19.2 rev/min) x (1.2 min)  =  23.04 revs .

That's pretty close to the "23" in the question, so I think that
everything here is in order.
4 0
3 years ago
Read 2 more answers
Examine the following equation.
alex41 [277]

Answer:

E)brain decay

Explanation:

Looking at the question causes it.

6 0
3 years ago
25 POINTS
Alexandra [31]

pshyical change is a usually reversible change of a substance, as size or shape: Freezing a liquid is a physical change. Compare chemical change.

internal change is when the movement of the particles increases

specific latent heat is the amount of energy per kg (unit mass) required to change ice to water without change in temperature.

4 0
3 years ago
Read 2 more answers
A charge alters the space around it. What is this alteration of space called?
iogann1982 [59]

Answer: electric field

Explanation: when a charge is placed in space, it alters the space around it by creating an electric field.

This electric field has the ability to exert a force (f) on any test charge(q) placed within this vicinity.

This is the reason why a charge can either attract or repel another charge.

6 0
3 years ago
The frequency of a microwave is 1.2 x 10^9 hertz. what is the wavelength of the given problem.
Olenka [21]

Answer:

0.25 m

Explanation:

Electromagnetic waves consist of oscillations of the electric and the magnetic field, oscillating in a plane perpendicular to the direction of motion the wave.

All electromagnetic waves travel in a vacuum always at the same speed, the speed of light, whose value is:

c=3.0\cdot 10^8 m/s

Microwave is an example of electromagnetic waves.

The relationship between wavelength and frequency for an electromagnetic wave is:

\lambda=\frac{c}{f}

where

\lambda is the wavelength

c=3.0\cdot 10^8 m/s  is the speed of light

f is the frequency

For the microwave in this problem,

f=1.2\cdot 10^9 Hz

So its wavelength is

\lambda=\frac{3.0\cdot 10^8}{1.2\cdot 10^9}=0.25 m

7 0
4 years ago
Other questions:
  • Two objects of the same mass travel in opposite directions along a horizontal surface. Object X has a speed of 5ms and object Y
    11·2 answers
  • Why do you think the government of ancient Rome was unfair?
    5·1 answer
  • The kinetic energy of a ball with a mass of 0.5 kg and a velocity of 10 m/s isJ.
    14·1 answer
  • Defensive strategies focus on ways to score points against the opposing team.
    10·1 answer
  • Magnets use ---- to attract to some objects
    12·2 answers
  • When a slice of buttered toast is accidentally pushed over the edge of a counter, it rotates as it falls. If the distance to the
    13·1 answer
  • A system dissipates 12 JJ of heat into the surroundings; meanwhile, 28 JJ of work is done on the system. What is the change of t
    7·1 answer
  • What is the kinetic energy of a 5 kg object moving at 4 m/s
    15·1 answer
  • The __________________ is a network of cells and fibers that send messages to different parts of the body.
    7·2 answers
  • A spaceprobe in outer space is flying with a constant speed of 1.795 km/s. The probe has a payload of 1635.0 kg and it carries 4
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!