Answer:
52
Explanation:
This is because if R is the midpoint of FRG, FR is half of FRG, so basically all you do it multiply by 2 to get the FRG
Answer:
6 moles of oxygen, or 3O2.
Explanation:
I would build a proportion for this:

Answer:
scientists often communicate their research results in three general ways:
1) One is to publish their results in peer-reviewed journals that can be ready by other scientists.
2) Two is to present their results at national and international conferences where other scientists can listen to presentations
Explanation:
Answer:
4.5 g/L.
Explanation:
- To solve this problem, we must mention Henry's law.
- Henry's law states that at a constant temperature, the amount of a given gas dissolved in a given type and volume of liquid is directly proportional to the partial pressure of that gas in equilibrium with that liquid.
- It can be expressed as: P = KS,
P is the partial pressure of the gas above the solution.
K is the Henry's law constant,
S is the solubility of the gas.
- At two different pressures, we have two different solubilities of the gas.
<em>∴ P₁S₂ = P₂S₁.</em>
P₁ = 525.0 kPa & S₁ = 10.5 g/L.
P₂ = 225.0 kPa & S₂ = ??? g/L.
∴ S₂ = P₂S₁/P₁ = (225.0 kPa)(10.5 g/L) / (525.0 kPa) = 4.5 g/L.
Explanation:
Bond order is inversely proportional to the bond length.

In
molecule. one nitrogen is double bonded to nitrogen and one oxygen is single bonded to nitrogen and hydrogen bond.
- Bond order between the (N=O) bond is 2 which means that bond length between the (N=O) bond is shorter than that of the N-O bond.
- Bond order between the (N-O) bond is 1 which means that bond length of the N-O bond is longer than that of the bond length of (N=O) bond.