This is going to be a true answer so put true
mark me brainliest
The spectator ions would be the ions that <em>don't </em>comprise the precipitate in this reaction. You have four ionic species here: Pb²⁺, NO₃⁻, H⁺, and SO₄²⁻. Since Pb²⁺ and SO₄²⁻ combine, as you are told, to form the precipitate, that leaves H⁺ and NO₃⁻ (or, in normal text, H+ and NO3-) to be the spectator ions.
Edit: NO3- might be interpreted ambiguously since it's not immediately clear that the NO3 is a polyatomic ion with a -1 charge and not an NO compound with a 3- charge, so it should be written as [NO3]- or (NO3)-.
The net ionic reaction shows the reaction without the spectator ions. In this case, that would be: Pb²⁺(aq) + SO₄²⁻(aq) → PbSO₄(s).
Answer:
1. D.) Structural Data
2. C.) Overproduction
Explanation:
1. Structural Data was used to determine the similarities between the two species.
2. In biological terms, overproduction means that a generation had more offspring than can be supported by the environment. In this case, its a stronger hatchling beating out the waker hatchlings.
2nd one bhutdsaadxjytwwdghurfc
<h3>
Answer:</h3>
28.96 kJ/°C
<h3>
Explanation:</h3>
We are given;
- Enthalpy change (ΔH) = −3226.7 kJ/mol
- The reaction is exothermic since the heat change is negative;
- Mass of benzoic acid = 3.1007 g
- Temperature change (21.84°C to 24.67°C) = 2.83°C
We are required to find the heat capacity of benzoic acid;
<h3>Step 1: Moles of benzoic acid </h3>
Moles = Mass ÷ molar mass
Molar mass of benzoic = 122.12 g/mol
Therefore;
Moles = 3.1007 g ÷ 122.12 g/mol
= 0.0254 moles
<h3>Step 2: Determine the specific heat capacity </h3>
Heat change for 1 mole = 3226.7 kJ
Moles of Benzoic acid = 0.0254 moles
But;
Specific heat capacity × ΔT = Moles × Heat change
cΔT = nΔH
Therefore;
Specific heat capacity,c = nΔH ÷ ΔT
= (3226.7 kJ × 0.0254 moles) ÷ 2.83°C
= 28.96 kJ/°C
Therefore, the specific heat capacity of benzoic acid is 28.96 kJ/°C