Answer:
number of ions = 12.04 x 10^²³
Explanation:
n = number of ions/Avogadro's constant
2 = number of ions/6.02 x 10^²³
number of ions= 2 x 6.02 x 10^²³
number of ions = 12.04 x 10^²³
Given:
P1 = 13.0 atm
T1 = 20 °C
T2 = 102 °C
Required:
P2 of oxygen
Solution:
At constant volume,
we can apply Gay-Lussac’s law of pressure and temperature relationship
P1/T1=P2/T2
(13.0 atm) / (20 °C)
= P2 / (102 °C)
P2 = 66.3 atm
The answer is not in the choices given.
Answer:
b
. Irradiated food is shown to not be radioactive.
Explanation:
If it can be proven that irradiated food is not radioactive, then it will effective dispute the idea that irradiated food are less safe to eat.
- An irradiated food is one in which ionizing radiations have been employed to improve food quality.
- Thus, bacteria and other food spoilers can be exterminated from the food.
- Most irradiated food do not contain radiation and are fit for consumption.
If it can be proven, that this is true, then it will challenge the idea that irradiated foods are not safe.
1. 1/16 x 1 000 000= 62500
2. Each half life is 5750 years long
3. The end of a half life is found by dividing the beginning of the half life by 2.
4. The number 62500 is between the 7th and the 8th half lives (refer to the number of 14C atoms on my table)
5. The 7th half life is 40250 years, and the 8th half life is 46000 years.
6. Therefore, your estimate would be a number roughly in the middle of 40250 and 46000 (for example: 43000)
Hope this helps :)
I had this same question a while back, so I may not be right, but I'm pretty sure it's D. None of the above.