Answer: 4
Step-by-step exzplanation: 20/360= X/72
360X= 1440
Divide by 360
X=4
Answer:
Train A = 128
Train B = 68
Step-by-step explanation:
We can set up a system of equations for this problem
Let A = # of tons of Train A
Let B = # of tons of Train B
A + B = 196
A = B + 60
Now, we plug in A for the first equation, using substitution
(B+60) + B = 196
2B + 60 = 196
Subtract 60 from both sides
2B = 136
Divide both sides by 2
B = 68
Plug in 68 for B in the 2nd equation
A = 68 + 60
A = 128
Checking work: 128 + 68 = 196 :D hope this helped
A true because this is an example of the Associative Property by moving the parentheses but having the same outcome.
Properties of equality have nothing to do with it. The associative and commutative properties of multiplication are used (along with the distributive property and the fact of arithmetic: 9 = 10 - 1).
All of these problems make use of the strategy, "look at what you have before you start work."
1. = (4·5)·(-3) = 20·(-3) = -60 . . . . if you know factors of 60, you can do this any way you like. It is convenient to ignore the sign until the final result.
2. = (2.25·4)·23 = 9·23 = 23·10 -23 = 230 -23 = 207 . . . . multiplication by 4 can clear the fraction in 2 1/4, so we choose to do that first. Multiplication by 9 can be done with a subtraction that is often easier than using ×9 facts.
4. = (2·5)·12·(-1) = 10·12·(-1) = (-1)·120 = -120 . . . . multiplying by 10 is about the easiest, so it is convenient to identify the factors of 10 and use them first. Again, it is convenient to ignore the sign until the end.
5. = 0 . . . . when a factor is zero, the product is zero
A. Because when you try to find something (per) you will divide
I hope this helps