Answer:
atom(which contains protons, neutrons and electrons)
The magnitude of the force that the beam exerts on the hi.nge will be,261.12N.
To find the answer, we need to know about the tension.
<h3>How to find the magnitude of the force that the beam exerts on the hi.nge?</h3>
- Let's draw the free body diagram of the system using the given data.
- From the diagram, we have to find the magnitude of the force that the beam exerts on the hi.nge.
- For that, it is given that the horizontal component of force is equal to the 86.62N, which is same as that of the horizontal component of normal reaction that exerts by the beam on the hi.nge.

- We have to find the vertical component of normal reaction that exerts by the beam on the hi.nge. For this, we have to equate the total force in the vertical direction.

- To find Ny, we need to find the tension T.
- For this, we can equate the net horizontal force.

- Thus, the vertical component of normal reaction that exerts by the beam on the hi.nge become,

- Thus, the magnitude of the force that the beam exerts on the hi.nge will be,

Thus, we can conclude that, the magnitude of the force that the beam exerts on the hi.nge is 261.12N.
Learn more about the tension here:
brainly.com/question/28106871
#SPJ1
A crazy sport thats kinda dangerous
Answer:
The diameter of the bull-wheel is 3.82
Explanation:
Given that,
Velocity = 2.0 m/s
Angular velocity = 10 rev/m


We need to calculate the diameter of bull-wheel
Using formula of angular velocity


Put the value into the formula


The diameter of the bull-wheel



Hence, The diameter of the bull-wheel is 3.82 m.
From that list, only the frequency makes the difference.
Einstein won his only Nobel Prize for his explanation of this effect.