<u>Answer</u>
3.44 m/s
<u>Explanation</u>
The motion apply the equations of Newton's law of motion. The ball is acceleration is -9.8 m/s² (acceleration due to gravity. It is negative because the ball is going against gravity, so it is decelerating).
The first equation of Newton's law of motion is;
V = U + at
Where V is the final velocity, U is the initial velocity, a is acceleration and t the time taken.
V = 25 + (-9.8 × 2.2)
= 25 - 21.56
= 3.44 m/s
Horizontal component of force = 100cos(36)= 80.9 N
Answer:
There is a loss of fluid in the container of 0.475L
Explanation:
To solve the problem it is necessary to take into account the concepts related to the change of voumen in a substance depending on the temperature.
The formula that describes this thermal expansion process is given by:

Where,
Change in volume
Initial Volume
Change in temperature
coefficient of volume expansion (Coefficient of copper and of the liquid for this case)
There are two types of materials in the container, liquid and copper, so we have to change the amount of Total Volume that would be subject to,

Where,
= Change in the volume of liquid
= Change in the volume of copper
Then replacing with the previous equation we have:


Our values are given as,
Thermal expansion coefficient for copper and the liquid to 20°C is




Replacing we have that,



Therefore there is a loss of fluid in the container of 0.475L
Answer:
human body is answer according to our studies
Answer:
the velocity of the fish relative to the water when it hits the water is 9.537m/s and 66.52⁰ below horizontal
Explanation:
initial veetical speed V₀y=0
Horizontal speed Vx = Vx₀= 3.80m/s
Vertical drop height= 3.90m
Let Vy = vertical speed when it got to the water downward.
g= 9.81m/s² = acceleration due to gravity
From kinematics equation of motion for vertical drop
Vy²= V₀y² +2 gh
Vy²= 0 + ( 2× 9.8 × 3.90)
Vy= √76.518
Vy=8.747457
Then we can calculate the velocity of the fish relative to the water when it hits the water using Resultant speed formula below
V= √Vy² + Vx²
V=√3.80² + 8.747457²
V=9.537m/s
The angle can also be calculated as
θ=tan⁻¹(Vy/Vx)
tan⁻¹( 8.747457/3.80)
=66.52⁰
the velocity of the fish relative to the water when it hits the water is 9.537m/s and 66.52⁰ below horizontal