Answer:
(i) -556 rad/s²
(ii) 17900 revolutions
(iii) 11250 meters
(iv) -55.6 m/s²
(v) 18 seconds
Explanation:
(i) Angular acceleration is change in angular velocity over time.
α = (ω − ω₀) / t
α = (10000 − 15000) / 9
α ≈ -556 rad/s²
(ii) Constant acceleration equation:
θ = θ₀ + ω₀ t + ½ αt²
θ = 0 + (15000) (9) + ½ (-556) (9)²
θ = 112500 radians
θ ≈ 17900 revolutions
(iii) Linear displacement equals radius times angular displacement:
s = rθ
s = (0.100 m) (112500 radians)
s = 11250 meters
(iv) Linear acceleration equals radius times angular acceleration:
a = rα
a = (0.100 m) (-556 rad/s²)
a = -55.6 m/s²
(v) Angular acceleration is change in angular velocity over time.
α = (ω − ω₀) / t
-556 = (0 − 15000) / t
t = 27
t − 9 = 18 seconds
I believe it is speed.
Hope this helps!
Answer:
See below
Explanation:
Find the NET forces on the objects
A 20==>
B 0
C 30==>
D 15==>
So biggest accel = C because it has the most force acting on it
next is A because it has the next biggest force
next is D then B ...B has no net force acting on it
The efficiency of the first Carnot engine is
n1 = 1 - Th/T
The efficiency of the second Carnot engine is
n2 = 1 - T/Tc
The total efficiency of the engines put in series is
n = 1 - Th/Tc
<span />
Answer:
Ecu/Eag = 0.46
Explanation:
E = PI/A
Ecu = Pcu × I/A
Pcu = 1.72×10^-8 ohm-meter
r = 0.8 mm = 0.8/1000 = 8×10^-4 m
A = πr^2 = π×(8×10^-4)^2 = 6.4×10^-7π
Ecu = 1.72×10^-8I/6.4×10^-7π = 0.026875I/1
Eag = Pag × I/A
Pag = 1.47×10^-8 ohm-meter
r = 0.5 mm = 0.5/1000 = 5×10^-4 m
A = πr^2 = π × (5×10^-4)^2 = 2.5×10^-7π
Eag = 1.47×10^-8I/2.5×10^-7π = 0.0588I/π
Ecu/Eag = 0.026875I/π × π/0.0588I = 0.46