Answer:

Explanation: For this, it is often best to find the horizontal asymptote, and then take limits as x approaches the vertical asymptote and the end behaviours.
Well, we know there will be a horizontal asymptote at y = 0, because as x approaches infinite and negative infinite, the graph will shrink down closer and closer to 0, but never touch it. We call this a horizontal asymptote.
So we know that there is a restriction on the y-axis.
Now, since we know the end behaviours, let's find the asymptotic behaviours.
As x approaches the asymptote of 7⁻, then y would be diverging out to negative infinite.
As x approaches the asymptote at 7⁺, then y would be diverging out to negative infinite.
So, our range would be:
3/7≈0.429
I hope it will help you
Like you would put 0.5 or 1. or 1.5 as like 1/2 or 1/3 and you plot negatives first
Answer:
u^2 +7u -8=0 where u = 3x+2
Step-by-step explanation:
(3x+2)^2 + 7(3x+2) - 8=0
Let 3x+2 = u
u^2 +7u -8=0
Answer:
Dang I wished I knew how to make a smoothie