<h3><u>Answer;</u></h3>
D) Standing wave
<h3><u>Explanation;</u></h3>
- Standing wave also called stationary wave is a wave which oscillates in time but whose peak amplitude profile does not move in space.
- A standing wave pattern is a vibrational pattern created within a medium when the vibrational frequency of the source causes reflected waves from one end of the medium to interfere with incident waves from the source.
- Examples of standing waves include the vibration of a violin string and electron orbitals in an atom.
25,000 Feet = 7620m
PE = mgh where m is mass, g is gravity accel: 9.8 n h is height
= 90 x 9.8 x 7620
= 6720840J
= 6.72MJ
F = ma where m is mass, a is accel = gravity = 9.8
= 90 x 9.8
= 882N
Accel = gravity = 9.8m/s^2
KE = 1/2mv^2 where m is mass n v is vel
if no wind resistance, PE leaving airplane = KE at net
6720840 = 1/2 x 90 x v^2
v^2 = 149352
v = 386.5m/s
Most of the momentum is transferred to the ball on top. Since the collision in this situation is elastic, momentum is conserved, meaning the momentum of both balls before hitting the floor is equal to the momentum of both balls right after the collision.
Answer:
E_Phase = 560V
Explanation:
The computation of the voltage i.e. dropped across each phase is shown below:
Given that
The delta connection line voltage is
E_line = 560 V
And, in the case of delta connection, the line voltage would be equivalent to the phase voltage
That means
E_Phase = E_Line
= 560 V
Hence, the voltage i.e. dropped across each phase is
E_Phase = 560V