1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Savatey [412]
3 years ago
9

If the mass of a material is 45 grams and the volume of the material is 10 cm^3, what would the density of the material be

Physics
1 answer:
umka2103 [35]3 years ago
4 0
81.4/m3 is my answer

You might be interested in
What type of galaxy is shown?
dexar [7]
Elliptical, because the shape of the galaxy isn’t like the others. It is unique to its own and doesn’t have another to compare to
8 0
3 years ago
Read 2 more answers
Which type of energy is released when a bond between atoms is broken
Murrr4er [49]

Answer: gases

Explanation: because gases move around freely and they would be the only one to make sense because solid are compacted together and liquid are not so fast at moving but gases are wild                                          

dont use this this is a bad explanation

4 0
3 years ago
A train is moving with a velocity of 70 km/h. If north is taken as the positive direction, what is the direction of movement of
Anna11 [10]

Answer:

+70 km/h north

Explanation:

4 0
2 years ago
A circular ring with area 4.45 cm2 is carrying a current of 13.5 A. The ring, initially at rest, is immersed in a region of unif
Gwar [14]

Answer:

a) ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ ) N.m

b) ΔU = -0.000747871 J

c)  w = 47.97 rad / s

Explanation:

Given:-

- The area of the circular ring, A = 4.45 cm^2

- The current carried by circular ring, I = 13.5 Amps

- The magnetic field strength, vec ( B ) = (1.05×10−2T).(12i^+3j^−4k^)

- The magnetic moment initial orientation, vec ( μi ) = μ.(−0.8i^+0.6j^)  

- The magnetic moment final orientation, vec ( μf ) = -μ k^

- The inertia of ring, T = 6.50×10^−7 kg⋅m2

Solution:-

- First we will determine the magnitude of magnetic moment ( μ ) from the following relation:

                    μ = N*I*A

Where,

           N: The number of turns

           I : Current in coil

           A: the cross sectional area of coil

- Use the given values and determine the magnitude ( μ ) for a single coil i.e ( N = 1 ):

                    μ = 1*( 13.5 ) * ( 4.45 / 100^2 )

                    μ = 0.0060075 A-m^2

- From definition the torque on the ring is the determined from cross product of the magnetic moment vec ( μ ) and magnetic field strength vec ( B ). The torque on the ring in initial position:

             vec ( τi ) = vec ( μi ) x vec ( B )

              = 0.0060075*( -0.8 i^ + 0.6 j^ ) x 0.0105*( 12 i^ + 3 j^ -4 k^ )

              = ( -0.004806 i^ + 0.0036045 j^ ) x ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

- Perform cross product:

          \left[\begin{array}{ccc}i&j&k\\-0.004806&0.0036045&0\\0.126&0.0315&-0.042\end{array}\right]  = \left[\begin{array}{ccc}-0.00015139\\-0.00020185\\-0.00060556\end{array}\right] \\\\

- The initial torque ( τi ) is written as follows:

           vec ( τi ) = ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ )

           

- The magnetic potential energy ( U ) is the dot product of magnetic moment vec ( μ ) and magnetic field strength vec ( B ):

- The initial potential energy stored in the circular ring ( Ui ) is:

          Ui = - vec ( μi ) . vec ( B )

          Ui =- ( -0.004806 i^ + 0.0036045 j^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Ui = -[( -0.004806*0.126 ) + ( 0.0036045*0.0315 ) + ( 0*-0.042 )]

          Ui = - [(-0.000605556 + 0.00011)]

          Ui = 0.000495556 J

- The final potential energy stored in the circular ring ( Uf ) is determined in the similar manner after the ring is rotated by 90 degrees with a new magnetic moment orientation ( μf ) :

          Uf = - vec ( μf ) . vec ( B )

          Uf = - ( -0.0060075 k^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Uf = - [( 0*0.126 ) + ( 0*0.0315 ) + ( -0.0060075*-0.042 ) ]

          Uf = -0.000252315 J

- The decrease in magnetic potential energy of the ring is arithmetically determined:

          ΔU = Uf - Ui

          ΔU = -0.000252315 - 0.000495556  

          ΔU = -0.000747871 J

Answer: There was a decrease of ΔU = -0.000747871 J of potential energy stored in the ring.

- We will consider the system to be isolated from any fictitious forces and gravitational effects are negligible on the current carrying ring.

- The conservation of magnetic potential ( U ) energy in the form of Kinetic energy ( Ek ) is valid for the given application:

                Ui + Eki = Uf + Ekf

Where,

             Eki : The initial kinetic energy ( initially at rest ) = 0

             Ekf : The final kinetic energy at second position

- The loss in potential energy stored is due to the conversion of potential energy into rotational kinetic energy of current carrying ring.    

               -ΔU = Ekf

                0.5*T*w^2 = -ΔU

                w^2 = -ΔU*2 / T

Where,

                w: The angular speed at second position

               w = √(0.000747871*2 / 6.50×10^−7)

              w = 47.97 rad / s

6 0
3 years ago
Shrinking Loop. A circular loop of flexible iron wire has an initial circumference of 168 cm , but its circumference is decreasi
DedPeter [7]

Answer:

103.1 V

Explanation:

We are given that

Initial circumference=C=168 cm

\frac{dC}{dt}=-15cm/s

Magnetic field,B=0.9 T

We have to find the magnitude of the  emf induced in the loop after exactly time 8 s has passed since the circumference of the loop started to decrease.

Magnetic flux=\phi=BA=B(\pi r^2)

Circumference,C=2\pi r

r=\frac{C}{2\pi}

r=\frac{168}{2\pi} cm

\frac{dr}{dt}=\frac{1}{2\pi}\frac{dC}{dt}=\frac{1}{2\pi}(-15)=-\frac{15}{2\pi} cm/s

\int dr=-\int \frac{15}{2\pi}dt

r=-\frac{15}{2\pi}t+C

When t=0

r=\frac{168}{2\pi}

\frac{168}{2\pi}=C

r=-\frac{15}{2\pi}t+\frac{168}{2\pi}

E=-\frac{d\phi}{dt}=-\frac{d(B\pi r^2)}{dt}=-2\pi rB\frac{dr}{dt}

E=-2\pi(-\frac{5}{2\pi}t+\frac{168}{2\pi})B\times -\frac{15}{2\pi}

t=8 s

B=0.9

E=2\pi\times \frac{15}{2\pi}\times 0.9(-\frac{15}{2\pi}(8)+\frac{168}{2\pi})

E=103.1 V

6 0
3 years ago
Other questions:
  • Which parameter of glass is measured with bromoform and bromobenzene mixtures in a column?
    8·2 answers
  • How does the movement of particles of matter change when matter goes from solid to liquid?
    10·1 answer
  • As pressure increases, temperature must ______________ for water to remain in a gaseous state.
    15·1 answer
  • The source of Earth's magnetic field is
    5·2 answers
  • A force on a particle depends on position such that f(x) = (3.00 n/m2)x 2 + (3.50 n/m)x for a particle constrained to move along
    11·2 answers
  • What advice would a personal trainer give you before a workout?
    7·2 answers
  • Which of the following BEST describes cardiovascular fitness?
    14·2 answers
  • Which of the following can be used as a measure of an object's inertia?
    13·1 answer
  • The narrator of a story
    12·2 answers
  • A bullet is fired horizontally at 343 m/s from the top of a building where height is 37.3 m. The built will be
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!